IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms14153.html
   My bibliography  Save this article

The ancient CYP716 family is a major contributor to the diversification of eudicot triterpenoid biosynthesis

Author

Listed:
  • Karel Miettinen

    (VIB
    Ghent University)

  • Jacob Pollier

    (VIB
    Ghent University)

  • Dieter Buyst

    (Ghent University)

  • Philipp Arendt

    (VIB
    Ghent University
    Laboratory for Protein Biochemistry and Biomolecular Engineering, Ghent University
    VIB Medical Biotechnology Center)

  • René Csuk

    (Martin-Luther-University Halle-Wittenberg)

  • Sven Sommerwerk

    (Martin-Luther-University Halle-Wittenberg)

  • Tessa Moses

    (VIB
    Ghent University)

  • Jan Mertens

    (VIB
    Ghent University)

  • Prashant D Sonawane

    (Weizmann Institute of Science)

  • Laurens Pauwels

    (VIB
    Ghent University)

  • Asaph Aharoni

    (Weizmann Institute of Science)

  • José Martins

    (Ghent University)

  • David R. Nelson

    (Immunology and Biochemistry, University of Tennessee Health Science Center)

  • Alain Goossens

    (VIB
    Ghent University)

Abstract

Triterpenoids are widespread bioactive plant defence compounds with potential use as pharmaceuticals, pesticides and other high-value products. Enzymes belonging to the cytochrome P450 family have an essential role in creating the immense structural diversity of triterpenoids across the plant kingdom. However, for many triterpenoid oxidation reactions, the corresponding enzyme remains unknown. Here we characterize CYP716 enzymes from different medicinal plant species by heterologous expression in engineered yeasts and report ten hitherto unreported triterpenoid oxidation activities, including a cyclization reaction, leading to a triterpenoid lactone. Kingdom-wide phylogenetic analysis of over 400 CYP716s from over 200 plant species reveals details of their evolution and suggests that in eudicots the CYP716s evolved specifically towards triterpenoid biosynthesis. Our findings underscore the great potential of CYP716s as a source for generating triterpenoid structural diversity and expand the toolbox available for synthetic biology programmes for sustainable production of bioactive plant triterpenoids.

Suggested Citation

  • Karel Miettinen & Jacob Pollier & Dieter Buyst & Philipp Arendt & René Csuk & Sven Sommerwerk & Tessa Moses & Jan Mertens & Prashant D Sonawane & Laurens Pauwels & Asaph Aharoni & José Martins & David, 2017. "The ancient CYP716 family is a major contributor to the diversification of eudicot triterpenoid biosynthesis," Nature Communications, Nature, vol. 8(1), pages 1-13, April.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14153
    DOI: 10.1038/ncomms14153
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms14153
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms14153?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhen-Hui Wang & Xin-Feng Wang & Tianyuan Lu & Ming-Rui Li & Peng Jiang & Jing Zhao & Si-Tong Liu & Xue-Qi Fu & Jonathan F. Wendel & Yves Peer & Bao Liu & Lin-Feng Li, 2022. "Reshuffling of the ancestral core-eudicot genome shaped chromatin topology and epigenetic modification in Panax," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Wei Yuan & Chenjian Jiang & Qin Wang & Yubo Fang & Jin Wang & Meng Wang & Han Xiao, 2022. "Biosynthesis of mushroom-derived type II ganoderic acids by engineered yeast," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Xiaoyue Chen & Graham A. Hudson & Charlotte Mineo & Bashar Amer & Edward E. K. Baidoo & Samantha A. Crowe & Yuzhong Liu & Jay D. Keasling & Henrik V. Scheller, 2023. "Deciphering triterpenoid saponin biosynthesis by leveraging transcriptome response to methyl jasmonate elicitation in Saponaria vaccaria," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Wei Sun & Qinggang Yin & Huihua Wan & Ranran Gao & Chao Xiong & Chong Xie & Xiangxiao Meng & Yaolei Mi & Xiaotong Wang & Caixia Wang & Weiqiang Chen & Ziyan Xie & Zheyong Xue & Hui Yao & Peng Sun & Xu, 2023. "Characterization of the horse chestnut genome reveals the evolution of aescin and aesculin biosynthesis," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.