IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms13680.html
   My bibliography  Save this article

Revealing the spin–vibronic coupling mechanism of thermally activated delayed fluorescence

Author

Listed:
  • Marc K. Etherington

    (Durham University)

  • Jamie Gibson

    (School of Chemistry, Newcastle University)

  • Heather F. Higginbotham

    (Durham University)

  • Thomas J. Penfold

    (School of Chemistry, Newcastle University)

  • Andrew P. Monkman

    (Durham University)

Abstract

Knowing the underlying photophysics of thermally activated delayed fluorescence (TADF) allows proper design of high efficiency organic light-emitting diodes. We have proposed a model to describe reverse intersystem crossing (rISC) in donor–acceptor charge transfer molecules, where spin–orbit coupling between singlet and triplet states is mediated by one of the local triplet states of the donor (or acceptor). This second order, vibronically coupled mechanism describes the basic photophysics of TADF. Through a series of measurements, whereby the energy ordering of the charge transfer (CT) excited states and the local triplet are tuned in and out of resonance, we show that TADF reaches a maximum at the resonance point, substantiating our model of rISC. Moreover, using photoinduced absorption, we show how the populations of both singlet and triplet CT states and the local triplet state change in and out of resonance. Our vibronic coupling rISC model is used to predict this behaviour and describes how rISC and TADF are affected by external perturbation.

Suggested Citation

  • Marc K. Etherington & Jamie Gibson & Heather F. Higginbotham & Thomas J. Penfold & Andrew P. Monkman, 2016. "Revealing the spin–vibronic coupling mechanism of thermally activated delayed fluorescence," Nature Communications, Nature, vol. 7(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13680
    DOI: 10.1038/ncomms13680
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms13680
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms13680?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyung Suk Kim & Sang Hoon Lee & Seunghyup Yoo & Chihaya Adachi, 2024. "Understanding of complex spin up-conversion processes in charge-transfer-type organic molecules," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Alexander J. Gillett & Claire Tonnelé & Giacomo Londi & Gaetano Ricci & Manon Catherin & Darcy M. L. Unson & David Casanova & Frédéric Castet & Yoann Olivier & Weimin M. Chen & Elena Zaborova & Emrys , 2021. "Spontaneous exciton dissociation enables spin state interconversion in delayed fluorescence organic semiconductors," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Changfeng Si & Tao Wang & Yan Xu & Dongqing Lin & Dianming Sun & Eli Zysman-Colman, 2024. "A temperature sensor with a wide spectral range based on a dual-emissive TADF dendrimer system," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.