IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51231-x.html
   My bibliography  Save this article

A temperature sensor with a wide spectral range based on a dual-emissive TADF dendrimer system

Author

Listed:
  • Changfeng Si

    (University of St Andrews)

  • Tao Wang

    (University of St Andrews)

  • Yan Xu

    (University of St Andrews)

  • Dongqing Lin

    (Nanjing University of Posts and Telecommunications)

  • Dianming Sun

    (University of St Andrews)

  • Eli Zysman-Colman

    (University of St Andrews)

Abstract

Dual emission from thermally activated delayed fluorescence (TADF) emitters is often difficult to observe, especially in solution, limited by Kasha’s rule. Two TADF dendrimers containing N-doped polycyclic aromatic hydrocarbons as acceptors are designed and synthesized. Compound 2GCzBPN, having a strongly twisted geometry, exhibits TADF, while 2GCzBPPZ, possessing a less twisted geometry, shows dual emission associated with the monomer and aggregate that is TADF. The demonstration reveals that 2GCzBPPZ can serve as a temperature sensor with excellent temperature sensitivity and remarkably wide emission color response in solution. By embedding 2GCzBPPZ in paraffin we demonstrate a spatial-temperature sensor that shows a noticeable emission shift from yellow to green and ultimately to blue as the temperature increases from 20 to 200 °C. We finally demonstrate the utility of these TADF dendrimers in solution-processed organic light-emitting diodes.

Suggested Citation

  • Changfeng Si & Tao Wang & Yan Xu & Dongqing Lin & Dianming Sun & Eli Zysman-Colman, 2024. "A temperature sensor with a wide spectral range based on a dual-emissive TADF dendrimer system," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51231-x
    DOI: 10.1038/s41467-024-51231-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51231-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51231-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marc K. Etherington & Jamie Gibson & Heather F. Higginbotham & Thomas J. Penfold & Andrew P. Monkman, 2016. "Revealing the spin–vibronic coupling mechanism of thermally activated delayed fluorescence," Nature Communications, Nature, vol. 7(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyung Suk Kim & Sang Hoon Lee & Seunghyup Yoo & Chihaya Adachi, 2024. "Understanding of complex spin up-conversion processes in charge-transfer-type organic molecules," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Alexander J. Gillett & Claire Tonnelé & Giacomo Londi & Gaetano Ricci & Manon Catherin & Darcy M. L. Unson & David Casanova & Frédéric Castet & Yoann Olivier & Weimin M. Chen & Elena Zaborova & Emrys , 2021. "Spontaneous exciton dissociation enables spin state interconversion in delayed fluorescence organic semiconductors," Nature Communications, Nature, vol. 12(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51231-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.