IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms13578.html
   My bibliography  Save this article

All-gas-phase synthesis of UiO-66 through modulated atomic layer deposition

Author

Listed:
  • Kristian Blindheim Lausund

    (Centre for Materials Science and Nanotechnology (SMN), University of Oslo, P.O. Box 1033 Blindern)

  • Ola Nilsen

    (Centre for Materials Science and Nanotechnology (SMN), University of Oslo, P.O. Box 1033 Blindern)

Abstract

Thin films of stable metal-organic frameworks (MOFs) such as UiO-66 have enormous application potential, for instance in microelectronics. However, all-gas-phase deposition techniques are currently not available for such MOFs. We here report on thin-film deposition of the thermally and chemically stable UiO-66 in an all-gas-phase process by the aid of atomic layer deposition (ALD). Sequential reactions of ZrCl4 and 1,4-benzenedicarboxylic acid produce amorphous organic–inorganic hybrid films that are subsequently crystallized to the UiO-66 structure by treatment in acetic acid vapour. We also introduce a new approach to control the stoichiometry between metal clusters and organic linkers by modulation of the ALD growth with additional acetic acid pulses. An all-gas-phase synthesis technique for UiO-66 could enable implementations in microelectronics that are not compatible with solvothermal synthesis. Since this technique is ALD-based, it could also give enhanced thickness control and the possibility to coat irregular substrates with high aspect ratios.

Suggested Citation

  • Kristian Blindheim Lausund & Ola Nilsen, 2016. "All-gas-phase synthesis of UiO-66 through modulated atomic layer deposition," Nature Communications, Nature, vol. 7(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13578
    DOI: 10.1038/ncomms13578
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms13578
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms13578?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Yuan & Liu, Yao & Zhang, Junhua & Huang, Rulu & Wang, Yue & Cao, Shuwan & He, Liang & Peng, Lincai, 2022. "Acetic acid-regulated mesoporous zirconium-furandicarboxylate hybrid with high lewis acidity and lewis basicity for efficient conversion of furfural to furfuryl alcohol," Renewable Energy, Elsevier, vol. 184(C), pages 115-123.
    2. Minghui Liu & Youxing Liu & Jichen Dong & Yichao Bai & Wenqiang Gao & Shengcong Shang & Xinyu Wang & Junhua Kuang & Changsheng Du & Ye Zou & Jianyi Chen & Yunqi Liu, 2022. "Two-dimensional covalent organic framework films prepared on various substrates through vapor induced conversion," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Wang, Yue & Liu, Huai & Zhang, Junhua & Cheng, Yuan & Lin, Wansi & Huang, Rulu & Peng, Lincai, 2022. "Direct epitaxial synthesis of magnetic biomass derived acid/base bifunctional zirconium-based hybrid for catalytic transfer hydrogenation of ethyl levulinate into γ-valerolactone," Renewable Energy, Elsevier, vol. 197(C), pages 911-921.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.