IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms13350.html
   My bibliography  Save this article

Structural roles of guide RNAs in the nuclease activity of Cas9 endonuclease

Author

Listed:
  • Youngbin Lim

    (Seoul National University)

  • So Young Bak

    (Seoul National University)

  • Keewon Sung

    (Seoul National University)

  • Euihwan Jeong

    (Seoul National University)

  • Seung Hwan Lee

    (Center for Genome Engineering, Institute for Basic Science)

  • Jin-Soo Kim

    (Seoul National University
    Center for Genome Engineering, Institute for Basic Science)

  • Sangsu Bae

    (Seoul National University
    Center for Genome Engineering, Institute for Basic Science
    Present address: Department of Chemistry, Hanyang University, Seoul 133-791, Republic of Korea)

  • Seong Keun Kim

    (Seoul National University
    Seoul National University)

Abstract

The type II CRISPR-associated protein Cas9 recognizes and cleaves target DNA with the help of two guide RNAs (gRNAs; tracrRNA and crRNA). However, the detailed mechanisms and kinetics of these gRNAs in the Cas9 nuclease activity are unclear. Here, we investigate the structural roles of gRNAs in the CRISPR-Cas9 system by single-molecule spectroscopy and reveal a new conformation of inactive Cas9 that is thermodynamically more preferable than active apo-Cas9. We find that tracrRNA prevents Cas9 from changing into the inactive form and leads to the Cas9:gRNA complex. For the Cas9:gRNA complex, we identify sub-conformations of the RNA–DNA heteroduplex during R-loop expansion. Our single-molecule study indicates that the kinetics of the sub-conformations is controlled by the complementarity between crRNA and target DNA. We conclude that both tracrRNA and crRNA regulate the conformations and kinetics of the Cas9 complex, which are crucial in the DNA cleavage activity of the CRISPR-Cas9 system.

Suggested Citation

  • Youngbin Lim & So Young Bak & Keewon Sung & Euihwan Jeong & Seung Hwan Lee & Jin-Soo Kim & Sangsu Bae & Seong Keun Kim, 2016. "Structural roles of guide RNAs in the nuclease activity of Cas9 endonuclease," Nature Communications, Nature, vol. 7(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13350
    DOI: 10.1038/ncomms13350
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms13350
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms13350?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Péter István Kulcsár & András Tálas & Zoltán Ligeti & Eszter Tóth & Zsófia Rakvács & Zsuzsa Bartos & Sarah Laura Krausz & Ágnes Welker & Vanessza Laura Végi & Krisztina Huszár & Ervin Welker, 2023. "A cleavage rule for selection of increased-fidelity SpCas9 variants with high efficiency and no detectable off-targets," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    2. Yang Liu & Filipe Pinto & Xinyi Wan & Zhugen Yang & Shuguang Peng & Mengxi Li & Jonathan M. Cooper & Zhen Xie & Christopher E. French & Baojun Wang, 2022. "Reprogrammed tracrRNAs enable repurposing of RNAs as crRNAs and sequence-specific RNA biosensors," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.