IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms12122.html
   My bibliography  Save this article

Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance

Author

Listed:
  • Dongliang Chao

    (School of Physical and Mathematical Sciences, Nanyang Technological University)

  • Changrong Zhu

    (School of Physical and Mathematical Sciences, Nanyang Technological University)

  • Peihua Yang

    (School of Physical and Mathematical Sciences, Nanyang Technological University)

  • Xinhui Xia

    (State Key Laboratory of Silicon Materials, Zhejiang University)

  • Jilei Liu

    (School of Physical and Mathematical Sciences, Nanyang Technological University)

  • Jin Wang

    (Energy Research Institute @ NTU, Nanyang Technological University)

  • Xiaofeng Fan

    (College of Materials Science and Engineering, Jilin University)

  • Serguei V. Savilov

    (Moscow State University)

  • Jianyi Lin

    (Energy Research Institute @ NTU, Nanyang Technological University)

  • Hong Jin Fan

    (School of Physical and Mathematical Sciences, Nanyang Technological University)

  • Ze Xiang Shen

    (School of Physical and Mathematical Sciences, Nanyang Technological University
    Energy Research Institute @ NTU, Nanyang Technological University)

Abstract

Sodium-ion batteries are a potentially low-cost and safe alternative to the prevailing lithium-ion battery technology. However, it is a great challenge to achieve fast charging and high power density for most sodium-ion electrodes because of the sluggish sodiation kinetics. Here we demonstrate a high-capacity and high-rate sodium-ion anode based on ultrathin layered tin(II) sulfide nanostructures, in which a maximized extrinsic pseudocapacitance contribution is identified and verified by kinetics analysis. The graphene foam supported tin(II) sulfide nanoarray anode delivers a high reversible capacity of ∼1,100 mAh g−1 at 30 mA g−1 and ∼420 mAh g−1 at 30 A g−1, which even outperforms its lithium-ion storage performance. The surface-dominated redox reaction rendered by our tailored ultrathin tin(II) sulfide nanostructures may also work in other layered materials for high-performance sodium-ion storage.

Suggested Citation

  • Dongliang Chao & Changrong Zhu & Peihua Yang & Xinhui Xia & Jilei Liu & Jin Wang & Xiaofeng Fan & Serguei V. Savilov & Jianyi Lin & Hong Jin Fan & Ze Xiang Shen, 2016. "Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance," Nature Communications, Nature, vol. 7(1), pages 1-8, November.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12122
    DOI: 10.1038/ncomms12122
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms12122
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms12122?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hasan, Md. Mahedi & Islam, Tamanna & Ratan, Zubair Ahmed & Shaikh, M. Nasiruzzaman & Karim, Mohammad Rezaul & Rahman, Mohammad Mominur & Alharbi, Hamad F. & Uddin, Jamal & Aziz, Md. Abdul & Ahammad, A, 2021. "Ni and Co oxide water oxidation electrocatalysts: Effect of thermal treatment on catalytic activity and surface morphology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Wu, Xi-Shuo & Dong, Xiao-Ling & Wang, Bo-Yang & Xia, Ji-Li & Li, Wen-Cui, 2022. "Revealing the sodium storage behavior of biomass-derived hard carbon by using pure lignin and cellulose as model precursors," Renewable Energy, Elsevier, vol. 189(C), pages 630-638.
    3. Zishuai Zhang & Yilong Zhu & Miao Yu & Yan Jiao & Yan Huang, 2022. "Development of long lifespan high-energy aqueous organic||iodine rechargeable batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Vadym V. Kulish & Daniel Koch & Sergei Manzhos, 2017. "Insertion of Mono- vs. Bi- vs. Trivalent Atoms in Prospective Active Electrode Materials for Electrochemical Batteries: An ab Initio Perspective," Energies, MDPI, vol. 10(12), pages 1-32, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.