IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms11937.html
   My bibliography  Save this article

Hypothalamic CRH neurons orchestrate complex behaviours after stress

Author

Listed:
  • Tamás Füzesi

    (Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary)

  • Nuria Daviu

    (Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary)

  • Jaclyn I. Wamsteeker Cusulin

    (Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary)

  • Robert P. Bonin

    (Leslie Dan School of Pharmacy, University of Toronto)

  • Jaideep S. Bains

    (Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary)

Abstract

All organisms possess innate behavioural and physiological programmes that ensure survival. In order to have maximum adaptive benefit, these programmes must be sufficiently flexible to account for changes in the environment. Here we show that hypothalamic CRH neurons orchestrate an environmentally flexible repertoire of behaviours that emerge after acute stress in mice. Optical silencing of CRH neurons disrupts the organization of individual behaviours after acute stress. These behavioural patterns shift according to the environment after stress, but this environmental sensitivity is blunted by activation of PVN CRH neurons. These findings provide evidence that PVN CRH cells are part of a previously unexplored circuit that matches precise behavioural patterns to environmental context following stress. Overactivity in this network in the absence of stress may contribute to environmental ambivalence, resulting in context-inappropriate behavioural strategies.

Suggested Citation

  • Tamás Füzesi & Nuria Daviu & Jaclyn I. Wamsteeker Cusulin & Robert P. Bonin & Jaideep S. Bains, 2016. "Hypothalamic CRH neurons orchestrate complex behaviours after stress," Nature Communications, Nature, vol. 7(1), pages 1-14, September.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11937
    DOI: 10.1038/ncomms11937
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms11937
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms11937?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Predrag Jovanovic & Allan-Hermann Pool & Nancy Morones & Yidan Wang & Edward Novinbakht & Nareg Keshishian & Kaitlyn Jang & Yuki Oka & Celine E. Riera, 2023. "A sex-specific thermogenic neurocircuit induced by predator smell recruiting cholecystokinin neurons in the dorsomedial hypothalamus," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Tamás Füzesi & Neilen P. Rasiah & David G. Rosenegger & Mijail Rojas-Carvajal & Taylor Chomiak & Núria Daviu & Leonardo A. Molina & Kathryn Simone & Toni-Lee Sterley & Wilten Nicola & Jaideep S. Bains, 2023. "Hypothalamic CRH neurons represent physiological memory of positive and negative experience," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Solomiia Korchynska & Patrick Rebernik & Marko Pende & Laura Boi & Alán Alpár & Ramon Tasan & Klaus Becker & Kira Balueva & Saiedeh Saghafi & Peer Wulff & Tamas L. Horvath & Gilberto Fisone & Hans-Ulr, 2022. "A hypothalamic dopamine locus for psychostimulant-induced hyperlocomotion in mice," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Blake J. Laham & Sahana S. Murthy & Monica Hanani & Mona Clappier & Sydney Boyer & Betsy Vasquez & Elizabeth Gould, 2022. "The estrous cycle modulates early-life adversity effects on mouse avoidance behavior through progesterone signaling," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Paula Gómez-Sotres & Urszula Skupio & Tommaso Dalla Tor & Francisca Julio-Kalajzic & Astrid Cannich & Doriane Gisquet & Itziar Bonilla-Del Rio & Filippo Drago & Nagore Puente & Pedro Grandes & Luigi B, 2024. "Olfactory bulb astrocytes link social transmission of stress to cognitive adaptation in male mice," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.