IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms11666.html
   My bibliography  Save this article

A global meta-analysis on the ecological drivers of forest restoration success

Author

Listed:
  • Renato Crouzeilles

    (Laboratory of Vertebrates, Universidade Federal do Rio de Janeiro
    International Institute for Sustainability
    Rio Conservation and Sustainability Science Centre, Pontifícia Universidade Católica)

  • Michael Curran

    (Group of Ecological Systems Design, Institute of Environmental Engineering, Swiss Federal Institute of Technology Zürich)

  • Mariana S. Ferreira

    (Laboratory of Vertebrates, Universidade Federal do Rio de Janeiro)

  • David B. Lindenmayer

    (Fenner School of Environment and Society, The Australian National University)

  • Carlos E. V. Grelle

    (Laboratory of Vertebrates, Universidade Federal do Rio de Janeiro)

  • José M. Rey Benayas

    (Alcala University)

Abstract

Two billion ha have been identified globally for forest restoration. Our meta-analysis encompassing 221 study landscapes worldwide reveals forest restoration enhances biodiversity by 15–84% and vegetation structure by 36–77%, compared with degraded ecosystems. For the first time, we identify the main ecological drivers of forest restoration success (defined as a return to a reference condition, that is, old-growth forest) at both the local and landscape scale. These are as follows: the time elapsed since restoration began, disturbance type and landscape context. The time elapsed since restoration began strongly drives restoration success in secondary forests, but not in selectively logged forests (which are more ecologically similar to reference systems). Landscape restoration will be most successful when previous disturbance is less intensive and habitat is less fragmented in the landscape. Restoration does not result in full recovery of biodiversity and vegetation structure, but can complement old-growth forests if there is sufficient time for ecological succession.

Suggested Citation

  • Renato Crouzeilles & Michael Curran & Mariana S. Ferreira & David B. Lindenmayer & Carlos E. V. Grelle & José M. Rey Benayas, 2016. "A global meta-analysis on the ecological drivers of forest restoration success," Nature Communications, Nature, vol. 7(1), pages 1-8, September.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11666
    DOI: 10.1038/ncomms11666
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms11666
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms11666?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stella Manes & Igor Rodrigues Henud & Kenny Tanizaki-Fonseca, 2022. "Climate change mitigation potential of Atlantic Forest reforestations," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(5), pages 1-15, June.
    2. Cao, Jianjun & Wei, Chen & Adamowski, Jan F. & Zhou, Junju & Liu, Chunfang & Zhu, Guofeng & Dong, Xiaogang & Zhang, Xiaofang & Zhao, Huijun & Feng, Qi, 2020. "Could arid and semi-arid abandoned lands prove ecologically or economically valuable if they afford greater soil organic carbon storage than afforested lands in China’s Loess Plateau?," Land Use Policy, Elsevier, vol. 99(C).
    3. Castro, Arianne Flexa de & Assis, Igor Rodrigues de & Caldeira, Cecílio Frois & Ramos, Silvio Junio & Coelho, Renan Rodrigues & Oliveira, Guilherme Corrêa de & Medeiros-Sarmento, Priscila Sanjuan & Ga, 2023. "Minimum thresholds of key ecological attributes facilitate the tracking of mineland restoration," Resources Policy, Elsevier, vol. 84(C).
    4. Changjun Gu & Pei Zhao & Qiong Chen & Shicheng Li & Lanhui Li & Linshan Liu & Yili Zhang, 2020. "Forest Cover Change and the Effectiveness of Protected Areas in the Himalaya since 1998," Sustainability, MDPI, vol. 12(15), pages 1-24, July.
    5. Stella Manes & Igor Rodrigues Henud & Kenny Tanizaki-Fonseca, 2022. "Climate change mitigation potential of Atlantic Forest reforestations," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(6), pages 1-15, August.
    6. Aryal, Kishor & Awasthi, Nripesh & Maraseni, Tek & Laudari, Hari Krishna & Gotame, Pabitra & Bist, Dhan Bahadur, 2023. "Calibrating Nepal's scientific forest management practices in the measure of forest restoration," Land Use Policy, Elsevier, vol. 127(C).
    7. Tamba, Yvonne & Wafula, Joshua & Whitney, Cory & Luedeling, Eike & Yigzaw, Negusse & Negussie, Aklilu & Muchiri, Caroline & Gebru, Yemane & Shepherd, Keith & Aynekulu, Ermias, 2021. "Stochastic simulation of restoration outcomes for a dry afromontane forest landscape in northern Ethiopia," Forest Policy and Economics, Elsevier, vol. 125(C).
    8. Qiming Zheng & Tim Ha & Alexander V. Prishchepov & Yiwen Zeng & He Yin & Lian Pin Koh, 2023. "The neglected role of abandoned cropland in supporting both food security and climate change mitigation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Ryan Nedd & Katie Light & Marcia Owens & Neil James & Elijah Johnson & Aavudai Anandhi, 2021. "A Synthesis of Land Use/Land Cover Studies: Definitions, Classification Systems, Meta-Studies, Challenges and Knowledge Gaps on a Global Landscape," Land, MDPI, vol. 10(9), pages 1-30, September.
    10. Allison B. Simler-Williamson & Matthew J. Germino, 2022. "Statistical considerations of nonrandom treatment applications reveal region-wide benefits of widespread post-fire restoration action," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11666. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.