IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms11209.html
   My bibliography  Save this article

Magnetic droplet nucleation boundary in orthogonal spin-torque nano-oscillators

Author

Listed:
  • Sunjae Chung

    (University of Gothenburg
    Materials and Nano Physics, School of ICT, KTH-Royal Institute of Technology)

  • Anders Eklund

    (Integrated Devices and Circuits, School of ICT, KTH-Royal Institute of Technology)

  • Ezio Iacocca

    (University of Gothenburg
    University of Colorado, Boulder
    Chalmers University of Technology)

  • Seyed Majid Mohseni

    (Shahid Beheshti University)

  • Sohrab R. Sani

    (Materials and Nano Physics, School of ICT, KTH-Royal Institute of Technology)

  • Lake Bookman

    (Yale University, New Haven)

  • Mark A. Hoefer

    (Shahid Beheshti University)

  • Randy K. Dumas

    (University of Gothenburg)

  • Johan Åkerman

    (University of Gothenburg
    Materials and Nano Physics, School of ICT, KTH-Royal Institute of Technology)

Abstract

Static and dynamic magnetic solitons play a critical role in applied nanomagnetism. Magnetic droplets, a type of non-topological dissipative soliton, can be nucleated and sustained in nanocontact spin-torque oscillators with perpendicular magnetic anisotropy free layers. Here, we perform a detailed experimental determination of the full droplet nucleation boundary in the current–field plane for a wide range of nanocontact sizes and demonstrate its excellent agreement with an analytical expression originating from a stability analysis. Our results reconcile recent contradicting reports of the field dependence of the droplet nucleation. Furthermore, our analytical model both highlights the relation between the fixed layer material and the droplet nucleation current magnitude, and provides an accurate method to experimentally determine the spin transfer torque asymmetry of each device.

Suggested Citation

  • Sunjae Chung & Anders Eklund & Ezio Iacocca & Seyed Majid Mohseni & Sohrab R. Sani & Lake Bookman & Mark A. Hoefer & Randy K. Dumas & Johan Åkerman, 2016. "Magnetic droplet nucleation boundary in orthogonal spin-torque nano-oscillators," Nature Communications, Nature, vol. 7(1), pages 1-8, September.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11209
    DOI: 10.1038/ncomms11209
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms11209
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms11209?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. Jiang & S. Chung & M. Ahlberg & A. Frisk & R. Khymyn & Q. Tuan Le & H. Mazraati & A. Houshang & O. Heinonen & J. Åkerman, 2024. "Magnetic droplet soliton pairs," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Martina Ahlberg & Sunjae Chung & Sheng Jiang & Andreas Frisk & Maha Khademi & Roman Khymyn & Ahmad A. Awad & Q. Tuan Le & Hamid Mazraati & Majid Mohseni & Markus Weigand & Iuliia Bykova & Felix Groß &, 2022. "Freezing and thawing magnetic droplet solitons," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.