IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms11108.html
   My bibliography  Save this article

High-sensitivity acoustic sensors from nanofibre webs

Author

Listed:
  • Chenhong Lang

    (College of Textiles, Donghua University
    Institute for Frontier Materials, Deakin University)

  • Jian Fang

    (Institute for Frontier Materials, Deakin University)

  • Hao Shao

    (Institute for Frontier Materials, Deakin University)

  • Xin Ding

    (College of Textiles, Donghua University)

  • Tong Lin

    (Institute for Frontier Materials, Deakin University)

Abstract

Considerable interest has been devoted to converting mechanical energy into electricity using polymer nanofibres. In particular, piezoelectric nanofibres produced by electrospinning have shown remarkable mechanical energy-to-electricity conversion ability. However, there is little data for the acoustic-to-electric conversion of electrospun nanofibres. Here we show that electrospun piezoelectric nanofibre webs have a strong acoustic-to-electric conversion ability. Using poly(vinylidene fluoride) as a model polymer and a sensor device that transfers sound directly to the nanofibre layer, we show that the sensor devices can detect low-frequency sound with a sensitivity as high as 266 mV Pa−1. They can precisely distinguish sound waves in low to middle frequency region. These features make them especially suitable for noise detection. Our nanofibre device has more than five times higher sensitivity than a commercial piezoelectric poly(vinylidene fluoride) film device. Electrospun piezoelectric nanofibres may be useful for developing high-performance acoustic sensors.

Suggested Citation

  • Chenhong Lang & Jian Fang & Hao Shao & Xin Ding & Tong Lin, 2016. "High-sensitivity acoustic sensors from nanofibre webs," Nature Communications, Nature, vol. 7(1), pages 1-7, September.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11108
    DOI: 10.1038/ncomms11108
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms11108
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms11108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fariha Rubaiya & Swati Mohan & Bhupendra B. Srivastava & Horacio Vasquez & Karen Lozano, 2021. "Piezoelectric Properties of PVDF-Zn 2 GeO 4 Fine Fiber Mats," Energies, MDPI, vol. 14(18), pages 1-15, September.
    2. Chong Li & Xinxin Liao & Zhi-Ke Peng & Guang Meng & Qingbo He, 2023. "Highly sensitive and broadband meta-mechanoreceptor via mechanical frequency-division multiplexing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Jinhui Zhang & Haimin Yao & Jiaying Mo & Songyue Chen & Yu Xie & Shenglin Ma & Rui Chen & Tao Luo & Weisong Ling & Lifeng Qin & Zuankai Wang & Wei Zhou, 2022. "Finger-inspired rigid-soft hybrid tactile sensor with superior sensitivity at high frequency," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.