IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms10546.html
   My bibliography  Save this article

Toughness and strength of nanocrystalline graphene

Author

Listed:
  • Ashivni Shekhawat

    (Lawrence Berkeley National Laboratory
    University of California, 324 Hearst Memorial Mining Building, MC 1760, Berkeley, California 94720, USA
    Miller Institute for Basic Research in Science)

  • Robert O. Ritchie

    (Lawrence Berkeley National Laboratory
    University of California, 324 Hearst Memorial Mining Building, MC 1760, Berkeley, California 94720, USA)

Abstract

Pristine monocrystalline graphene is claimed to be the strongest material known with remarkable mechanical and electrical properties. However, graphene made with scalable fabrication techniques is polycrystalline and contains inherent nanoscale line and point defects—grain boundaries and grain-boundary triple junctions—that lead to significant statistical fluctuations in toughness and strength. These fluctuations become particularly pronounced for nanocrystalline graphene where the density of defects is high. Here we use large-scale simulation and continuum modelling to show that the statistical variation in toughness and strength can be understood with ‘weakest-link’ statistics. We develop the first statistical theory of toughness in polycrystalline graphene, and elucidate the nanoscale origins of the grain-size dependence of its strength and toughness. Our results should lead to more reliable graphene device design, and provide a framework to interpret experimental results in a broad class of two-dimensional materials.

Suggested Citation

  • Ashivni Shekhawat & Robert O. Ritchie, 2016. "Toughness and strength of nanocrystalline graphene," Nature Communications, Nature, vol. 7(1), pages 1-8, April.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10546
    DOI: 10.1038/ncomms10546
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms10546
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms10546?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zezhu Zeng & Xingchen Shen & Ruihuan Cheng & Olivier Perez & Niuchang Ouyang & Zheyong Fan & Pierric Lemoine & Bernard Raveau & Emmanuel Guilmeau & Yue Chen, 2024. "Pushing thermal conductivity to its lower limit in crystals with simple structures," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.