IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms10402.html
   My bibliography  Save this article

Two distinct types of remapping in primate cortical area V4

Author

Listed:
  • Sujaya Neupane

    (Montreal Neurological Institute, McGill University)

  • Daniel Guitton

    (Montreal Neurological Institute, McGill University)

  • Christopher C. Pack

    (Montreal Neurological Institute, McGill University)

Abstract

Visual neurons typically receive information from a limited portion of the retina, and such receptive fields are a key organizing principle for much of visual cortex. At the same time, there is strong evidence that receptive fields transiently shift around the time of saccades. The nature of the shift is controversial: Previous studies have found shifts consistent with a role for perceptual constancy; other studies suggest a role in the allocation of spatial attention. Here we present evidence that both the previously documented functions exist in individual neurons in primate cortical area V4. Remapping associated with perceptual constancy occurs for saccades in all directions, while attentional shifts mainly occur for neurons with receptive fields in the same hemifield as the saccade end point. The latter are relatively sluggish and can be observed even during saccade planning. Overall these results suggest a complex interplay of visual and extraretinal influences during the execution of saccades.

Suggested Citation

  • Sujaya Neupane & Daniel Guitton & Christopher C. Pack, 2016. "Two distinct types of remapping in primate cortical area V4," Nature Communications, Nature, vol. 7(1), pages 1-11, April.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10402
    DOI: 10.1038/ncomms10402
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms10402
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms10402?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amir Akbarian & Kelsey Clark & Behrad Noudoost & Neda Nategh, 2021. "A sensory memory to preserve visual representations across eye movements," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Kaiser Niknam & Amir Akbarian & Kelsey Clark & Yasin Zamani & Behrad Noudoost & Neda Nategh, 2019. "Characterizing and dissociating multiple time-varying modulatory computations influencing neuronal activity," PLOS Computational Biology, Public Library of Science, vol. 15(9), pages 1-38, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.