IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms8957.html
   My bibliography  Save this article

High spectral purity Kerr frequency comb radio frequency photonic oscillator

Author

Listed:
  • W. Liang

    (OEwaves Inc., 465 North Halstead Street)

  • D. Eliyahu

    (OEwaves Inc., 465 North Halstead Street)

  • V. S. Ilchenko

    (OEwaves Inc., 465 North Halstead Street)

  • A. A. Savchenkov

    (OEwaves Inc., 465 North Halstead Street)

  • A. B. Matsko

    (OEwaves Inc., 465 North Halstead Street)

  • D. Seidel

    (OEwaves Inc., 465 North Halstead Street)

  • L. Maleki

    (OEwaves Inc., 465 North Halstead Street)

Abstract

Femtosecond laser-based generation of radio frequency signals has produced astonishing improvements in achievable spectral purity, one of the basic features characterizing the performance of an radio frequency oscillator. Kerr frequency combs hold promise for transforming these lab-scale oscillators to chip-scale level. In this work we demonstrate a miniature 10 GHz radio frequency photonic oscillator characterized with phase noise better than −60 dBc Hz−1 at 10 Hz, −90 dBc Hz−1 at 100 Hz and −170 dBc Hz−1 at 10 MHz. The frequency stability of this device, as represented by Allan deviation measurements, is at the level of 10−10 at 1–100 s integration time—orders of magnitude better than existing radio frequency photonic devices of similar size, weight and power consumption.

Suggested Citation

  • W. Liang & D. Eliyahu & V. S. Ilchenko & A. A. Savchenkov & A. B. Matsko & D. Seidel & L. Maleki, 2015. "High spectral purity Kerr frequency comb radio frequency photonic oscillator," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8957
    DOI: 10.1038/ncomms8957
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms8957
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms8957?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chao Xiang & Joel Guo & Warren Jin & Lue Wu & Jonathan Peters & Weiqiang Xie & Lin Chang & Boqiang Shen & Heming Wang & Qi-Fan Yang & David Kinghorn & Mario Paniccia & Kerry J. Vahala & Paul A. Morton, 2021. "High-performance lasers for fully integrated silicon nitride photonics," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Yang He & Raymond Lopez-Rios & Usman A. Javid & Jingwei Ling & Mingxiao Li & Shixin Xue & Kerry Vahala & Qiang Lin, 2023. "High-speed tunable microwave-rate soliton microcomb," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. Mingming Nie & Jonathan Musgrave & Kunpeng Jia & Jan Bartos & Shining Zhu & Zhenda Xie & Shu-Wei Huang, 2024. "Turnkey photonic flywheel in a microresonator-filtered laser," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Thibault Wildi & Alexander E. Ulanov & Thibault Voumard & Bastian Ruhnke & Tobias Herr, 2024. "Phase-stabilised self-injection-locked microcomb," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    5. Jingwei Ling & Zhengdong Gao & Shixin Xue & Qili Hu & Mingxiao Li & Kaibo Zhang & Usman A. Javid & Raymond Lopez-Rios & Jeremy Staffa & Qiang Lin, 2024. "Electrically empowered microcomb laser," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Hossein Taheri & Andrey B. Matsko & Lute Maleki & Krzysztof Sacha, 2022. "All-optical dissipative discrete time crystals," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8957. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.