IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms8810.html
   My bibliography  Save this article

The development and characterization of synthetic minimal yeast promoters

Author

Listed:
  • Heidi Redden

    (The University of Texas at Austin)

  • Hal S. Alper

    (The University of Texas at Austin
    The University of Texas at Austin)

Abstract

Synthetic promoters, especially minimally sized, are critical for advancing fungal synthetic biology. Fungal promoters often span hundreds of base pairs, nearly ten times the amount of bacterial counterparts. This size limits large-scale synthetic biology efforts in yeasts. Here we address this shortcoming by establishing a methodical workflow necessary to identify robust minimal core elements that can be linked with minimal upstream activating sequences to develop short, yet strong yeast promoters. Through a series of library-based synthesis, analysis and robustness tests, we create a set of non-homologous, purely synthetic, minimal promoters for yeast. These promoters are comprised of short core elements that are generic and interoperable and 10 bp UAS elements that impart strong, constitutive function. Through this methodology, we are able to generate the shortest fungal promoters to date, which can achieve high levels of both inducible and constitutive expression with up to an 80% reduction in size.

Suggested Citation

  • Heidi Redden & Hal S. Alper, 2015. "The development and characterization of synthetic minimal yeast promoters," Nature Communications, Nature, vol. 6(1), pages 1-9, November.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8810
    DOI: 10.1038/ncomms8810
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms8810
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms8810?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Inbal Vaknin & Or Willinger & Jonathan Mandl & Hadar Heuberger & Dan Ben-Ami & Yi Zeng & Sarah Goldberg & Yaron Orenstein & Roee Amit, 2024. "A universal system for boosting gene expression in eukaryotic cell-lines," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Jan Zrimec & Xiaozhi Fu & Azam Sheikh Muhammad & Christos Skrekas & Vykintas Jauniskis & Nora K. Speicher & Christoph S. Börlin & Vilhelm Verendel & Morteza Haghir Chehreghani & Devdatt Dubhashi & Ver, 2022. "Controlling gene expression with deep generative design of regulatory DNA," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Shuangying Jiang & Zhouqing Luo & Jie Wu & Kang Yu & Shijun Zhao & Zelin Cai & Wenfei Yu & Hui Wang & Li Cheng & Zhenzhen Liang & Hui Gao & Marco Monti & Daniel Schindler & Linsen Huang & Cheng Zeng &, 2023. "Building a eukaryotic chromosome arm by de novo design and synthesis," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.