IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms8261.html
   My bibliography  Save this article

Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting

Author

Listed:
  • Haotian Wang

    (Stanford University)

  • Hyun-Wook Lee

    (Stanford University)

  • Yong Deng

    (Stanford University)

  • Zhiyi Lu

    (Stanford University)

  • Po-Chun Hsu

    (Stanford University)

  • Yayuan Liu

    (Stanford University)

  • Dingchang Lin

    (Stanford University)

  • Yi Cui

    (Stanford University
    Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory)

Abstract

Developing earth-abundant, active and stable electrocatalysts which operate in the same electrolyte for water splitting, including oxygen evolution reaction and hydrogen evolution reaction, is important for many renewable energy conversion processes. Here we demonstrate the improvement of catalytic activity when transition metal oxide (iron, cobalt, nickel oxides and their mixed oxides) nanoparticles (∼20 nm) are electrochemically transformed into ultra-small diameter (2–5 nm) nanoparticles through lithium-induced conversion reactions. Different from most traditional chemical syntheses, this method maintains excellent electrical interconnection among nanoparticles and results in large surface areas and many catalytically active sites. We demonstrate that lithium-induced ultra-small NiFeOx nanoparticles are active bifunctional catalysts exhibiting high activity and stability for overall water splitting in base. We achieve 10 mA cm−2 water-splitting current at only 1.51 V for over 200 h without degradation in a two-electrode configuration and 1 M KOH, better than the combination of iridium and platinum as benchmark catalysts.

Suggested Citation

  • Haotian Wang & Hyun-Wook Lee & Yong Deng & Zhiyi Lu & Po-Chun Hsu & Yayuan Liu & Dingchang Lin & Yi Cui, 2015. "Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8261
    DOI: 10.1038/ncomms8261
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms8261
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms8261?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mengyun Hou & Lirong Zheng & Di Zhao & Xin Tan & Wuyi Feng & Jiantao Fu & Tianxin Wei & Minhua Cao & Jiatao Zhang & Chen Chen, 2024. "Microenvironment reconstitution of highly active Ni single atoms on oxygen-incorporated Mo2C for water splitting," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Jihyun Baek & Md Delowar Hossain & Pinaki Mukherjee & Junghwa Lee & Kirsten T. Winther & Juyoung Leem & Yue Jiang & William C. Chueh & Michal Bajdich & Xiaolin Zheng, 2023. "Synergistic effects of mixing and strain in high entropy spinel oxides for oxygen evolution reaction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.