IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms7963.html
   My bibliography  Save this article

Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material

Author

Listed:
  • S. Dai

    (University of California, San Diego)

  • Q. Ma

    (Massachusetts Institute of Technology)

  • T. Andersen

    (Massachusetts Institute of Technology)

  • A. S. Mcleod

    (University of California, San Diego)

  • Z. Fei

    (University of California, San Diego)

  • M. K. Liu

    (University of California, San Diego
    Stony Brook University)

  • M. Wagner

    (University of California, San Diego)

  • K. Watanabe

    (National Institute for Materials Science, Namiki 1-1)

  • T. Taniguchi

    (National Institute for Materials Science, Namiki 1-1)

  • M. Thiemens

    (University of California, San Diego)

  • F. Keilmann

    (Ludwig-Maximilians-Universität and Center for Nanoscience)

  • P. Jarillo-Herrero

    (Massachusetts Institute of Technology)

  • M. M. Fogler

    (University of California, San Diego)

  • D. N. Basov

    (University of California, San Diego)

Abstract

Uniaxial materials whose axial and tangential permittivities have opposite signs are referred to as indefinite or hyperbolic media. In such materials, light propagation is unusual leading to novel and often non-intuitive optical phenomena. Here we report infrared nano-imaging experiments demonstrating that crystals of hexagonal boron nitride, a natural mid-infrared hyperbolic material, can act as a ‘hyper-focusing lens’ and as a multi-mode waveguide. The lensing is manifested by subdiffractional focusing of phonon–polaritons launched by metallic disks underneath the hexagonal boron nitride crystal. The waveguiding is revealed through the modal analysis of the periodic patterns observed around such launchers and near the sample edges. Our work opens new opportunities for anisotropic layered insulators in infrared nanophotonics complementing and potentially surpassing concurrent artificial hyperbolic materials with lower losses and higher optical localization.

Suggested Citation

  • S. Dai & Q. Ma & T. Andersen & A. S. Mcleod & Z. Fei & M. K. Liu & M. Wagner & K. Watanabe & T. Taniguchi & M. Thiemens & F. Keilmann & P. Jarillo-Herrero & M. M. Fogler & D. N. Basov, 2015. "Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7963
    DOI: 10.1038/ncomms7963
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms7963
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms7963?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yixi Zhou & Adrien Waelchli & Margherita Boselli & Iris Crassee & Adrien Bercher & Weiwei Luo & Jiahua Duan & J.L.M. Mechelen & Dirk Marel & Jérémie Teyssier & Carl Willem Rischau & Lukas Korosec & St, 2023. "Thermal and electrostatic tuning of surface phonon-polaritons in LaAlO3/SrTiO3 heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Eva Arianna Aurelia Pogna & Leonardo Viti & Antonio Politano & Massimo Brambilla & Gaetano Scamarcio & Miriam Serena Vitiello, 2021. "Mapping propagation of collective modes in Bi2Se3 and Bi2Te2.2Se0.8 topological insulators by near-field terahertz nanoscopy," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Mingze He & Joseph R. Matson & Mingyu Yu & Angela Cleri & Sai S. Sunku & Eli Janzen & Stefan Mastel & Thomas G. Folland & James H. Edgar & D. N. Basov & Jon-Paul Maria & Stephanie Law & Joshua D. Cald, 2023. "Polariton design and modulation via van der Waals/doped semiconductor heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Xiang Ni & Giulia Carini & Weiliang Ma & Enrico Maria Renzi & Emanuele Galiffi & Sören Wasserroth & Martin Wolf & Peining Li & Alexander Paarmann & Andrea Alù, 2023. "Observation of directional leaky polaritons at anisotropic crystal interfaces," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Rao Fu & Yusong Qu & Mengfei Xue & Xinghui Liu & Shengyao Chen & Yongqian Zhao & Runkun Chen & Boxuan Li & Hongming Weng & Qian Liu & Qing Dai & Jianing Chen, 2024. "Manipulating hyperbolic transient plasmons in a layered semiconductor," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Sebastián Castilla & Hitesh Agarwal & Ioannis Vangelidis & Yuliy V. Bludov & David Alcaraz Iranzo & Adrià Grabulosa & Matteo Ceccanti & Mikhail I. Vasilevskiy & Roshan Krishna Kumar & Eli Janzen & Jam, 2024. "Electrical spectroscopy of polaritonic nanoresonators," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Hong Zhou & Zhihao Ren & Dongxiao Li & Cheng Xu & Xiaojing Mu & Chengkuo Lee, 2023. "Dynamic construction of refractive index-dependent vibrations using surface plasmon-phonon polaritons," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Joseph Matson & Sören Wasserroth & Xiang Ni & Maximilian Obst & Katja Diaz-Granados & Giulia Carini & Enrico Maria Renzi & Emanuele Galiffi & Thomas G. Folland & Lukas M. Eng & J. Michael Klopf & Stef, 2023. "Controlling the propagation asymmetry of hyperbolic shear polaritons in beta-gallium oxide," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Jiade Li & Li Wang & Yani Wang & Zhiyu Tao & Weiliang Zhong & Zhibin Su & Siwei Xue & Guangyao Miao & Weihua Wang & Hailin Peng & Jiandong Guo & Xuetao Zhu, 2024. "Observation of the nonanalytic behavior of optical phonons in monolayer hexagonal boron nitride," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. H. Shiravi & A. Gupta & B. R. Ortiz & S. Cui & B. Yu & E. Uykur & A. A. Tsirlin & S. D. Wilson & Z. Sun & G. X. Ni, 2024. "Plasmons in the Kagome metal CsV3Sb5," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7963. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.