IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms10237.html
   My bibliography  Save this article

A generic strategy for CRISPR-Cas9-mediated gene tagging

Author

Listed:
  • Daniel H. Lackner

    (Horizon Genomics)

  • Alexia Carré

    (Horizon Genomics)

  • Paloma M. Guzzardo

    (Horizon Genomics)

  • Carina Banning

    (Horizon Genomics)

  • Ramu Mangena

    (Horizon Discovery)

  • Tom Henley

    (Horizon Discovery)

  • Sarah Oberndorfer

    (Horizon Genomics)

  • Bianca V. Gapp

    (Ludwig Cancer Research, University of Oxford)

  • Sebastian M.B. Nijman

    (Ludwig Cancer Research, University of Oxford)

  • Thijn R. Brummelkamp

    (Netherlands Cancer Institute)

  • Tilmann Bürckstümmer

    (Horizon Genomics)

Abstract

Genome engineering has been greatly enhanced by the availability of Cas9 endonuclease that can be targeted to almost any genomic locus using so called guide RNAs (gRNAs). However, the introduction of foreign DNA sequences to tag an endogenous gene is still cumbersome as it requires the synthesis or cloning of homology templates. Here we present a strategy that enables the tagging of endogenous loci using one generic donor plasmid. It contains the tag of interest flanked by two gRNA recognition sites that allow excision of the tag from the plasmid. Co-transfection of cells with Cas9, a gRNA specifying the genomic locus of interest, the donor plasmid and a cassette-specific gRNA triggers the insertion of the tag by a homology-independent mechanism. The strategy is efficient and delivers clones that display a predictable integration pattern. As showcases we generated NanoLuc luciferase- and TurboGFP-tagged reporter cell lines.

Suggested Citation

  • Daniel H. Lackner & Alexia Carré & Paloma M. Guzzardo & Carina Banning & Ramu Mangena & Tom Henley & Sarah Oberndorfer & Bianca V. Gapp & Sebastian M.B. Nijman & Thijn R. Brummelkamp & Tilmann Bürckst, 2015. "A generic strategy for CRISPR-Cas9-mediated gene tagging," Nature Communications, Nature, vol. 6(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms10237
    DOI: 10.1038/ncomms10237
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms10237
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms10237?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zsolt Bodai & Alena L. Bishop & Valentino M. Gantz & Alexis C. Komor, 2022. "Targeting double-strand break indel byproducts with secondary guide RNAs improves Cas9 HDR-mediated genome editing efficiencies," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Patrizia Tornabene & Rita Ferla & Manel Llado-Santaeularia & Miriam Centrulo & Margherita Dell’Anno & Federica Esposito & Elena Marrocco & Emanuela Pone & Renato Minopoli & Carolina Iodice & Edoardo N, 2022. "Therapeutic homology-independent targeted integration in retina and liver," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms10237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.