IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms6836.html
   My bibliography  Save this article

Measurement and control of quasiparticle dynamics in a superconducting qubit

Author

Listed:
  • C. Wang

    (Yale University)

  • Y. Y. Gao

    (Yale University)

  • I. M. Pop

    (Yale University)

  • U. Vool

    (Yale University)

  • C. Axline

    (Yale University)

  • T. Brecht

    (Yale University)

  • R. W. Heeres

    (Yale University)

  • L. Frunzio

    (Yale University)

  • M. H. Devoret

    (Yale University)

  • G. Catelani

    (Peter Grünberg Institut (PGI-2), Forschungszentrum Jülich)

  • L. I. Glazman

    (Yale University)

  • R. J. Schoelkopf

    (Yale University)

Abstract

Superconducting circuits have attracted growing interest in recent years as a promising candidate for fault-tolerant quantum information processing. Extensive efforts have always been taken to completely shield these circuits from external magnetic fields to protect the integrity of the superconductivity. Here we show vortices can improve the performance of superconducting qubits by reducing the lifetimes of detrimental single-electron-like excitations known as quasiparticles. Using a contactless injection technique with unprecedented dynamic range, we quantitatively distinguish between recombination and trapping mechanisms in controlling the dynamics of residual quasiparticle, and show quantized changes in quasiparticle trapping rate because of individual vortices. These results highlight the prominent role of quasiparticle trapping in future development of superconducting qubits, and provide a powerful characterization tool along the way.

Suggested Citation

  • C. Wang & Y. Y. Gao & I. M. Pop & U. Vool & C. Axline & T. Brecht & R. W. Heeres & L. Frunzio & M. H. Devoret & G. Catelani & L. I. Glazman & R. J. Schoelkopf, 2014. "Measurement and control of quasiparticle dynamics in a superconducting qubit," Nature Communications, Nature, vol. 5(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6836
    DOI: 10.1038/ncomms6836
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms6836
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms6836?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. V. Iaia & J. Ku & A. Ballard & C. P. Larson & E. Yelton & C. H. Liu & S. Patel & R. McDermott & B. L. T. Plourde, 2022. "Phonon downconversion to suppress correlated errors in superconducting qubits," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Suhas Ganjam & Yanhao Wang & Yao Lu & Archan Banerjee & Chan U Lei & Lev Krayzman & Kim Kisslinger & Chenyu Zhou & Ruoshui Li & Yichen Jia & Mingzhao Liu & Luigi Frunzio & Robert J. Schoelkopf, 2024. "Surpassing millisecond coherence in on chip superconducting quantum memories by optimizing materials and circuit design," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Shingo Kono & Jiahe Pan & Mahdi Chegnizadeh & Xuxin Wang & Amir Youssefi & Marco Scigliuzzo & Tobias J. Kippenberg, 2024. "Mechanically induced correlated errors on superconducting qubits with relaxation times exceeding 0.4 ms," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6836. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.