IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33997-0.html
   My bibliography  Save this article

Phonon downconversion to suppress correlated errors in superconducting qubits

Author

Listed:
  • V. Iaia

    (Syracuse University)

  • J. Ku

    (Syracuse University)

  • A. Ballard

    (Syracuse University)

  • C. P. Larson

    (Syracuse University)

  • E. Yelton

    (Syracuse University)

  • C. H. Liu

    (University of Wisconsin-Madison)

  • S. Patel

    (University of Wisconsin-Madison)

  • R. McDermott

    (University of Wisconsin-Madison)

  • B. L. T. Plourde

    (Syracuse University)

Abstract

Quantum error correction can preserve quantum information in the presence of local errors, but correlated errors are fatal. For superconducting qubits, high-energy particle impacts from background radioactivity produce energetic phonons that travel throughout the substrate and create excitations above the superconducting ground state, known as quasiparticles, which can poison all qubits on the chip. We use normal metal reservoirs on the chip back side to downconvert phonons to low energies where they can no longer poison qubits. We introduce a pump-probe scheme involving controlled injection of pair-breaking phonons into the qubit chips. We examine quasiparticle poisoning on chips with and without back-side metallization and demonstrate a reduction in the flux of pair-breaking phonons by over a factor of 20. We use a Ramsey interferometer scheme to simultaneously monitor quasiparticle parity on three qubits for each chip and observe a two-order of magnitude reduction in correlated poisoning due to background radiation.

Suggested Citation

  • V. Iaia & J. Ku & A. Ballard & C. P. Larson & E. Yelton & C. H. Liu & S. Patel & R. McDermott & B. L. T. Plourde, 2022. "Phonon downconversion to suppress correlated errors in superconducting qubits," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33997-0
    DOI: 10.1038/s41467-022-33997-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33997-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33997-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. C. Wang & Y. Y. Gao & I. M. Pop & U. Vool & C. Axline & T. Brecht & R. W. Heeres & L. Frunzio & M. H. Devoret & G. Catelani & L. I. Glazman & R. J. Schoelkopf, 2014. "Measurement and control of quasiparticle dynamics in a superconducting qubit," Nature Communications, Nature, vol. 5(1), pages 1-7, December.
    2. L. Cardani & F. Valenti & N. Casali & G. Catelani & T. Charpentier & M. Clemenza & I. Colantoni & A. Cruciani & G. D’Imperio & L. Gironi & L. Grünhaupt & D. Gusenkova & F. Henriques & M. Lagoin & M. M, 2021. "Reducing the impact of radioactivity on quantum circuits in a deep-underground facility," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    3. C. D. Wilen & S. Abdullah & N. A. Kurinsky & C. Stanford & L. Cardani & G. D’Imperio & C. Tomei & L. Faoro & L. B. Ioffe & C. H. Liu & A. Opremcak & B. G. Christensen & J. L. DuBois & R. McDermott, 2021. "Correlated charge noise and relaxation errors in superconducting qubits," Nature, Nature, vol. 594(7863), pages 369-373, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shingo Kono & Jiahe Pan & Mahdi Chegnizadeh & Xuxin Wang & Amir Youssefi & Marco Scigliuzzo & Tobias J. Kippenberg, 2024. "Mechanically induced correlated errors on superconducting qubits with relaxation times exceeding 0.4 ms," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Xianchuang Pan & Yuxuan Zhou & Haolan Yuan & Lifu Nie & Weiwei Wei & Libo Zhang & Jian Li & Song Liu & Zhi Hao Jiang & Gianluigi Catelani & Ling Hu & Fei Yan & Dapeng Yu, 2022. "Engineering superconducting qubits to reduce quasiparticles and charge noise," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Robin Anthony-Petersen & Andreas Biekert & Raymond Bunker & Clarence L. Chang & Yen-Yung Chang & Luke Chaplinsky & Eleanor Fascione & Caleb W. Fink & Maurice Garcia-Sciveres & Richard Germond & Wei Gu, 2024. "A stress-induced source of phonon bursts and quasiparticle poisoning," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. M. Lucas & A. V. Danilov & L. V. Levitin & A. Jayaraman & A. J. Casey & L. Faoro & A. Ya. Tzalenchuk & S. E. Kubatkin & J. Saunders & S. E. de Graaf, 2023. "Quantum bath suppression in a superconducting circuit by immersion cooling," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. J. M. Kitzman & J. R. Lane & C. Undershute & P. M. Harrington & N. R. Beysengulov & C. A. Mikolas & K. W. Murch & J. Pollanen, 2023. "Phononic bath engineering of a superconducting qubit," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    6. Suhas Ganjam & Yanhao Wang & Yao Lu & Archan Banerjee & Chan U Lei & Lev Krayzman & Kim Kisslinger & Chenyu Zhou & Ruoshui Li & Yichen Jia & Mingzhao Liu & Luigi Frunzio & Robert J. Schoelkopf, 2024. "Surpassing millisecond coherence in on chip superconducting quantum memories by optimizing materials and circuit design," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Yu-Xin Wang & Aashish A. Clerk, 2021. "Intrinsic and induced quantum quenches for enhancing qubit-based quantum noise spectroscopy," Nature Communications, Nature, vol. 12(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33997-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.