IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms6084.html
   My bibliography  Save this article

Efficient selective and atom economic catalytic conversion of glycerol to lactic acid

Author

Listed:
  • Liam S. Sharninghausen

    (Yale University)

  • Jesús Campos

    (Yale University)

  • Michael G. Manas

    (Yale University)

  • Robert H. Crabtree

    (Yale University)

Abstract

The availability of glycerol is rapidly increasing due to the expanding biodiesel industry, which produces this polyol as the main waste material. Several value-added chemicals have been synthesized using glycerol as a feedstock; however, the conversion of glycerol to lactic acid has been investigated to a lesser extent despite the numerous and novel uses of lactic acid. We report a family of iridium complexes as the first homogeneous catalysts for the conversion of glycerol to lactic acid. These have higher activity and selectivity than the previously reported heterogeneous systems. In addition, hydrogen gas is generated as a useful byproduct. Unlike prior systems, the reactions can be performed in air, under mild conditions and without solvent. Our method has even been applied to samples of crude glycerol waste derived from the biodiesel industry without prior purification, albeit with somewhat lower activity while maintaining the same high selectivity.

Suggested Citation

  • Liam S. Sharninghausen & Jesús Campos & Michael G. Manas & Robert H. Crabtree, 2014. "Efficient selective and atom economic catalytic conversion of glycerol to lactic acid," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6084
    DOI: 10.1038/ncomms6084
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms6084
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms6084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pedersen, T.H. & Grigoras, I.F. & Hoffmann, J. & Toor, S.S. & Daraban, I.M. & Jensen, C.U. & Iversen, S.B. & Madsen, R.B. & Glasius, M. & Arturi, K.R. & Nielsen, R.P. & Søgaard, E.G. & Rosendahl, L.A., 2016. "Continuous hydrothermal co-liquefaction of aspen wood and glycerol with water phase recirculation," Applied Energy, Elsevier, vol. 162(C), pages 1034-1041.
    2. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Rajaei, Kourosh & Tarighi, Sara, 2018. "Oxidation of bio-renewable glycerol to value-added chemicals through catalytic and electro-chemical processes," Applied Energy, Elsevier, vol. 230(C), pages 1347-1379.
    3. Wei Chen & Liang Zhang & Leitao Xu & Yuanqing He & Huan Pang & Shuangyin Wang & Yuqin Zou, 2024. "Pulse potential mediated selectivity for the electrocatalytic oxidation of glycerol to glyceric acid," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.