IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms5967.html
   My bibliography  Save this article

Forest stand growth dynamics in Central Europe have accelerated since 1870

Author

Listed:
  • Hans Pretzsch

    (Chair for Forest Growth and Yield Science, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2)

  • Peter Biber

    (Chair for Forest Growth and Yield Science, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2)

  • Gerhard Schütze

    (Chair for Forest Growth and Yield Science, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2)

  • Enno Uhl

    (Chair for Forest Growth and Yield Science, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2
    Bavarian State Institute of Forestry, Hans-Carl-von-Carlowitz-Platz 1)

  • Thomas Rötzer

    (Chair for Forest Growth and Yield Science, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2)

Abstract

Forest ecosystems have been exposed to climate change for more than 100 years, whereas the consequences on forest growth remain elusive. Based on the oldest existing experimental forest plots in Central Europe, we show that, currently, the dominant tree species Norway spruce and European beech exhibit significantly faster tree growth (+32 to 77%), stand volume growth (+10 to 30%) and standing stock accumulation (+6 to 7%) than in 1960. Stands still follow similar general allometric rules, but proceed more rapidly through usual trajectories. As forest stands develop faster, tree numbers are currently 17–20% lower than in past same-aged stands. Self-thinning lines remain constant, while growth rates increase indicating the stock of resources have not changed, while growth velocity and turnover have altered. Statistical analyses of the experimental plots, and application of an ecophysiological model, suggest that mainly the rise in temperature and extended growing seasons contribute to increased growth acceleration, particularly on fertile sites.

Suggested Citation

  • Hans Pretzsch & Peter Biber & Gerhard Schütze & Enno Uhl & Thomas Rötzer, 2014. "Forest stand growth dynamics in Central Europe have accelerated since 1870," Nature Communications, Nature, vol. 5(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5967
    DOI: 10.1038/ncomms5967
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms5967
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms5967?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julia Noë & Karl-Heinz Erb & Sarah Matej & Andreas Magerl & Manan Bhan & Simone Gingrich, 2021. "Altered growth conditions more than reforestation counteracted forest biomass carbon emissions 1990–2020," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Félix Bastit & David W. Shanafelt & Marielle Brunette, 2023. "Stability and resilience of a forest bio-economic equilibrium under natural disturbances," Working Papers of BETA 2023-18, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    3. Stavros Tsiantikoudis & Eleni Zafeiriou & Grigorios Kyriakopoulos & Garyfallos Arabatzis, 2019. "Revising the Environmental Kuznets Curve for Deforestation: An Empirical Study for Bulgaria," Sustainability, MDPI, vol. 11(16), pages 1-16, August.
    4. Thomas Knoke & Carola Paul & Elizabeth Gosling & Isabelle Jarisch & Johannes Mohr & Rupert Seidl, 2023. "Assessing the Economic Resilience of Different Management Systems to Severe Forest Disturbance," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(2), pages 343-381, February.
    5. Stankova, Tatiana V. & González-Rodríguez, Miguel Ángel & Diéguez-Aranda, Ulises & Ferezliev, Angel & Dimitrova, Proletka & Kolev, Kristiyan & Stefanova, Penka, 2024. "Productivity-environment models for Scots pine plantations in Bulgaria: an interaction of anthropogenic origin peculiarities and climate change," Ecological Modelling, Elsevier, vol. 490(C).
    6. Caicoya, Astor Toraño & Poschenrieder, Werner & Blattert, Clemens & Eyvindson, Kyle & Hartikainen, Markus & Burgas, Daniel & Mönkkönen, Mikko & Uhl, Enno & Vergarechea, Marta & Pretzsch, Hans, 2023. "Sectoral policies as drivers of forest management and ecosystems services: A case study in Bavaria, Germany," Land Use Policy, Elsevier, vol. 130(C).
    7. Antonín MARTINÍK & Zdeněk ADAMEC & Jakub HOUŠKA, 2017. "Production and soil restoration effect of pioneer tree species in a region of allochthonous Norway spruce dieback," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 63(1), pages 34-44.
    8. Forrester, David I. & England, Jacqueline R. & Paul, Keryn I. & Roxburgh, Stephen H., 2024. "Sensitivity analysis of the FullCAM model: Context dependency and implications for model development to predict Australia's forest carbon stocks," Ecological Modelling, Elsevier, vol. 489(C).
    9. Rupert Seidl & Cornelius Senf, 2024. "Changes in planned and unplanned canopy openings are linked in Europe’s forests," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    10. Westin, Kerstin & Bolte, Andreas & Haeler, Elena & Haltia, Emmi & Jandl, Robert & Juutinen, Artti & Kuhlmey, Katharina & Lidestav, Gun & Mäkipää, Raisa & Rosenkranz, Lydia & Triplat, Matevž & Skudnik,, 2023. "Forest values and application of different management activities among small-scale forest owners in five EU countries," Forest Policy and Economics, Elsevier, vol. 146(C).
    11. Jianwei W. Zhang & William W. Oliver & Russell T. Graham & W. Keith Moser, 2020. "The Level-of-Growing-Stock (LOGS) study on thinning ponderosa pine forests in the US West: A long-term collaborative experiment in density management," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 66(10), pages 393-406.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.