IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms5811.html
   My bibliography  Save this article

Colossal positive and negative thermal expansion and thermosalient effect in a pentamorphic organometallic martensite

Author

Listed:
  • Manas K. Panda

    (New York University Abu Dhabi)

  • Tomče Runčevski

    (Max Planck Institute for Solid State Research)

  • Subash Chandra Sahoo

    (New York University Abu Dhabi)

  • Alexei A. Belik

    (International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS))

  • Naba K. Nath

    (New York University Abu Dhabi)

  • Robert E. Dinnebier

    (Max Planck Institute for Solid State Research)

  • Panče Naumov

    (New York University Abu Dhabi)

Abstract

The thermosalient effect is an extremely rare propensity of certain crystalline solids for self-actuation by elastic deformation or by a ballistic event. Here we present direct evidence for the driving force behind this impressive crystal motility. Crystals of a prototypical thermosalient material, (phenylazophenyl)palladium hexafluoroacetylacetonate, can switch between five crystal structures (α—ε) that are related by four phase transitions including one thermosalient transition (α↔γ). The mechanical effect is driven by a uniaxial negative expansion that is compensated by unusually large positive axial expansion (260 × 10–6 K–1) with volumetric expansion coefficients (≈250 × 10–6 K–1) that are among the highest values reported in molecular solids thus far. The habit plane advances at ~104 times the rate observed with non-thermosalient transitions. This rapid expansion of the crystal following the phase switching is the driving force for occurrence of the thermosalient effect.

Suggested Citation

  • Manas K. Panda & Tomče Runčevski & Subash Chandra Sahoo & Alexei A. Belik & Naba K. Nath & Robert E. Dinnebier & Panče Naumov, 2014. "Colossal positive and negative thermal expansion and thermosalient effect in a pentamorphic organometallic martensite," Nature Communications, Nature, vol. 5(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5811
    DOI: 10.1038/ncomms5811
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms5811
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms5811?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Durga Prasad Karothu & Rodrigo Ferreira & Ghada Dushaq & Ejaz Ahmed & Luca Catalano & Jad Mahmoud Halabi & Zainab Alhaddad & Ibrahim Tahir & Liang Li & Sharmarke Mohamed & Mahmoud Rasras & Panče Naumo, 2022. "Exceptionally high work density of a ferroelectric dynamic organic crystal around room temperature," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Yuki Hagiwara & Shodai Hasebe & Hiroki Fujisawa & Junko Morikawa & Toru Asahi & Hideko Koshima, 2023. "Photothermally induced natural vibration for versatile and high-speed actuation of crystals," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Daniel William Davies & Bumjoon Seo & Sang Kyu Park & Stephen B. Shiring & Hyunjoong Chung & Prapti Kafle & Dafei Yuan & Joseph W. Strzalka & Ralph Weber & Xiaozhang Zhu & Brett M. Savoie & Ying Diao, 2023. "Unraveling two distinct polymorph transition mechanisms in one n-type single crystal for dynamic electronics," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.