IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms5796.html
   My bibliography  Save this article

Ferroic nature of magnetic toroidal order

Author

Listed:
  • Anne S. Zimmermann

    (HISKP, Universität Bonn, Nussallee 14-16)

  • Dennis Meier

    (ETH Zürich, Vladimir-Prelog-Weg 4)

  • Manfred Fiebig

    (ETH Zürich, Vladimir-Prelog-Weg 4)

Abstract

Electric dipoles and ferroelectricity violate spatial inversion symmetry, and magnetic dipoles and ferromagnetism break time-inversion symmetry. Breaking both symmetries favours magnetoelectric charge-spin coupling effects of enormous interest, such as multiferroics, skyrmions, polar superconductors, topological insulators or dynamic phenomena such as electromagnons. Extending the rationale, a novel type of ferroic order violating space- and time-inversion symmetry with a single order parameter should exist. This existence is fundamental and the inherent magnetoelectric coupling is technologically interesting. A uniform alignment of magnetic vortices, called ferrotoroidicity, was proposed to represent this state. Here we demonstrate that the magnetic vortex pattern identified in LiCoPO4 exhibits the indispensable hallmark of such a ferroic state, namely hysteretic poling of ferrotoroidic domains in the conjugate toroidal field, along with a distinction of toroidal from non-toroidal poling effects. This consolidates ferrotoroidicity as fourth form of ferroic order.

Suggested Citation

  • Anne S. Zimmermann & Dennis Meier & Manfred Fiebig, 2014. "Ferroic nature of magnetic toroidal order," Nature Communications, Nature, vol. 5(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5796
    DOI: 10.1038/ncomms5796
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms5796
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms5796?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xianghan Xu & Yiqing Hao & Shiyu Peng & Qiang Zhang & Danrui Ni & Chen Yang & Xi Dai & Huibo Cao & R. J. Cava, 2023. "Large off-diagonal magnetoelectricity in a triangular Co2+-based collinear antiferromagnet," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.