IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms5085.html
   My bibliography  Save this article

Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures

Author

Listed:
  • Benedikt Schwarz

    (Institute for Solid State Electronics and Center for Micro- and Nanostructures, Vienna University of Technology)

  • Peter Reininger

    (Institute for Solid State Electronics and Center for Micro- and Nanostructures, Vienna University of Technology)

  • Daniela Ristanić

    (Institute for Solid State Electronics and Center for Micro- and Nanostructures, Vienna University of Technology)

  • Hermann Detz

    (Institute for Solid State Electronics and Center for Micro- and Nanostructures, Vienna University of Technology)

  • Aaron Maxwell Andrews

    (Institute for Solid State Electronics and Center for Micro- and Nanostructures, Vienna University of Technology)

  • Werner Schrenk

    (Institute for Solid State Electronics and Center for Micro- and Nanostructures, Vienna University of Technology)

  • Gottfried Strasser

    (Institute for Solid State Electronics and Center for Micro- and Nanostructures, Vienna University of Technology)

Abstract

The increasing demand of rapid sensing and diagnosis in remote areas requires the development of compact and cost-effective mid-infrared sensing devices. So far, all miniaturization concepts have been demonstrated with discrete optical components. Here we present a monolithically integrated sensor based on mid-infrared absorption spectroscopy. A bi-functional quantum cascade laser/detector is used, where, by changing the applied bias, the device switches between laser and detector operation. The interaction with chemicals in a liquid is resolved via a dielectric-loaded surface plasmon polariton waveguide. The thin dielectric layer enhances the confinement and enables efficient end-fire coupling from and to the laser and detector. The unamplified detector signal shows a slope of 1.8–7 μV per p.p.m., which demonstrates the capability to reach p.p.m. accuracy over a wide range of concentrations (0–60%). Without any hybrid integration or subwavelength patterning, our approach allows a straightforward and cost-saving fabrication.

Suggested Citation

  • Benedikt Schwarz & Peter Reininger & Daniela Ristanić & Hermann Detz & Aaron Maxwell Andrews & Werner Schrenk & Gottfried Strasser, 2014. "Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures," Nature Communications, Nature, vol. 5(1), pages 1-7, September.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5085
    DOI: 10.1038/ncomms5085
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms5085
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms5085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arrigo Calzolari & Corey Oses & Cormac Toher & Marco Esters & Xiomara Campilongo & Sergei P. Stepanoff & Douglas E. Wolfe & Stefano Curtarolo, 2022. "Plasmonic high-entropy carbides," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Borislav Hinkov & Florian Pilat & Laurin Lux & Patricia L. Souza & Mauro David & Andreas Schwaighofer & Daniela Ristanić & Benedikt Schwarz & Hermann Detz & Aaron M. Andrews & Bernhard Lendl & Gottfri, 2022. "A mid-infrared lab-on-a-chip for dynamic reaction monitoring," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.