IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms3892.html
   My bibliography  Save this article

Revealing the properties of Mn2Au for antiferromagnetic spintronics

Author

Listed:
  • V.M.T.S. Barthem

    (Instituto de Fisica, Universidade Federal do Rio de Janeiro, Cidade Universitaria, Ilha do Fundao)

  • C.V. Colin

    (Univ. of Grenoble Alpes, Institut NEEL
    CNRS, Institut NEEL)

  • H. Mayaffre

    (Laboratoire National des Champs Magnétiques Intenses, CNRS-UJF-UPS-INSA, 25 rue des Martyrs, BP166, F-38042 Grenoble 9, France)

  • M.-H. Julien

    (Laboratoire National des Champs Magnétiques Intenses, CNRS-UJF-UPS-INSA, 25 rue des Martyrs, BP166, F-38042 Grenoble 9, France)

  • D. Givord

    (Instituto de Fisica, Universidade Federal do Rio de Janeiro, Cidade Universitaria, Ilha do Fundao
    Univ. of Grenoble Alpes, Institut NEEL
    CNRS, Institut NEEL)

Abstract

The continuous reduction in size of spintronic devices requires the development of structures, which are insensitive to parasitic external magnetic fields, while preserving the magnetoresistive signals of existing systems based on giant or tunnel magnetoresistance. This could be obtained in tunnel anisotropic magnetoresistance structures incorporating an antiferromagnetic, instead of a ferromagnetic, material. To turn this promising concept into real devices, new magnetic materials with large spin-orbit effects must be identified. Here we demonstrate that Mn2Au is not a Pauli paramagnet as hitherto believed but an antiferromagnet with Mn moments of ~4 μB. The particularly large strength of the exchange interactions leads to an extrapolated Néel temperature well above 1,000 K, so that ground-state magnetic properties are essentially preserved up to room temperature and above. Combined with the existence of a significant in-plane anisotropy, this makes Mn2Au the most promising material for antiferromagnetic spintronics identified so far.

Suggested Citation

  • V.M.T.S. Barthem & C.V. Colin & H. Mayaffre & M.-H. Julien & D. Givord, 2013. "Revealing the properties of Mn2Au for antiferromagnetic spintronics," Nature Communications, Nature, vol. 4(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3892
    DOI: 10.1038/ncomms3892
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms3892
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms3892?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. P. Bommanaboyena & D. Backes & L. S. I. Veiga & S. S. Dhesi & Y. R. Niu & B. Sarpi & T. Denneulin & A. Kovács & T. Mashoff & O. Gomonay & J. Sinova & K. Everschor-Sitte & D. Schönke & R. M. Reeve &, 2021. "Readout of an antiferromagnetic spintronics system by strong exchange coupling of Mn2Au and Permalloy," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    2. S. Reimers & Y. Lytvynenko & Y. R. Niu & E. Golias & B. Sarpi & L. S. I. Veiga & T. Denneulin & A. Kovács & R. E. Dunin-Borkowski & J. Bläßer & M. Kläui & M. Jourdan, 2023. "Current-driven writing process in antiferromagnetic Mn2Au for memory applications," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    3. Y. Behovits & A. L. Chekhov & S. Yu. Bodnar & O. Gueckstock & S. Reimers & Y. Lytvynenko & Y. Skourski & M. Wolf & T. S. Seifert & O. Gomonay & M. Kläui & M. Jourdan & T. Kampfrath, 2023. "Terahertz Néel spin-orbit torques drive nonlinear magnon dynamics in antiferromagnetic Mn2Au," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.