IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37569-8.html
   My bibliography  Save this article

Current-driven writing process in antiferromagnetic Mn2Au for memory applications

Author

Listed:
  • S. Reimers

    (Johannes Gutenberg-Universität Mainz)

  • Y. Lytvynenko

    (Johannes Gutenberg-Universität Mainz
    Institute of Magnetism of the NAS of Ukraine and MES of Ukraine)

  • Y. R. Niu

    (MAX IV Laboratory)

  • E. Golias

    (MAX IV Laboratory)

  • B. Sarpi

    (Diamond Light Source, Chilton)

  • L. S. I. Veiga

    (Diamond Light Source, Chilton)

  • T. Denneulin

    (Forschungszentrum Jülich)

  • A. Kovács

    (Forschungszentrum Jülich)

  • R. E. Dunin-Borkowski

    (Forschungszentrum Jülich)

  • J. Bläßer

    (Johannes Gutenberg-Universität Mainz)

  • M. Kläui

    (Johannes Gutenberg-Universität Mainz)

  • M. Jourdan

    (Johannes Gutenberg-Universität Mainz)

Abstract

Current pulse driven Néel vector rotation in metallic antiferromagnets is one of the most promising concepts in antiferromagnetic spintronics. We show microscopically that the Néel vector of epitaxial thin films of the prototypical compound Mn2Au can be reoriented reversibly in the complete area of cross shaped device structures using single current pulses. The resulting domain pattern with aligned staggered magnetization is long term stable enabling memory applications. We achieve this switching with low heating of ≈20 K, which is promising regarding fast and efficient devices without the need for thermal activation. Current polarity dependent reversible domain wall motion demonstrates a Néel spin-orbit torque acting on the domain walls.

Suggested Citation

  • S. Reimers & Y. Lytvynenko & Y. R. Niu & E. Golias & B. Sarpi & L. S. I. Veiga & T. Denneulin & A. Kovács & R. E. Dunin-Borkowski & J. Bläßer & M. Kläui & M. Jourdan, 2023. "Current-driven writing process in antiferromagnetic Mn2Au for memory applications," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37569-8
    DOI: 10.1038/s41467-023-37569-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37569-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37569-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. P. Bommanaboyena & D. Backes & L. S. I. Veiga & S. S. Dhesi & Y. R. Niu & B. Sarpi & T. Denneulin & A. Kovács & T. Mashoff & O. Gomonay & J. Sinova & K. Everschor-Sitte & D. Schönke & R. M. Reeve &, 2021. "Readout of an antiferromagnetic spintronics system by strong exchange coupling of Mn2Au and Permalloy," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    2. Leandro Salemi & Marco Berritta & Ashis K. Nandy & Peter M. Oppeneer, 2019. "Orbitally dominated Rashba-Edelstein effect in noncentrosymmetric antiferromagnets," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    3. V.M.T.S. Barthem & C.V. Colin & H. Mayaffre & M.-H. Julien & D. Givord, 2013. "Revealing the properties of Mn2Au for antiferromagnetic spintronics," Nature Communications, Nature, vol. 4(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Y. Behovits & A. L. Chekhov & S. Yu. Bodnar & O. Gueckstock & S. Reimers & Y. Lytvynenko & Y. Skourski & M. Wolf & T. S. Seifert & O. Gomonay & M. Kläui & M. Jourdan & T. Kampfrath, 2023. "Terahertz Néel spin-orbit torques drive nonlinear magnon dynamics in antiferromagnetic Mn2Au," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Y. Behovits & A. L. Chekhov & S. Yu. Bodnar & O. Gueckstock & S. Reimers & Y. Lytvynenko & Y. Skourski & M. Wolf & T. S. Seifert & O. Gomonay & M. Kläui & M. Jourdan & T. Kampfrath, 2023. "Terahertz Néel spin-orbit torques drive nonlinear magnon dynamics in antiferromagnetic Mn2Au," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Sara Varotto & Annika Johansson & Börge Göbel & Luis M. Vicente-Arche & Srijani Mallik & Julien Bréhin & Raphaël Salazar & François Bertran & Patrick Le Fèvre & Nicolas Bergeal & Julien Rault & Ingrid, 2022. "Direct visualization of Rashba-split bands and spin/orbital-charge interconversion at KTaO3 interfaces," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. S. P. Bommanaboyena & D. Backes & L. S. I. Veiga & S. S. Dhesi & Y. R. Niu & B. Sarpi & T. Denneulin & A. Kovács & T. Mashoff & O. Gomonay & J. Sinova & K. Everschor-Sitte & D. Schönke & R. M. Reeve &, 2021. "Readout of an antiferromagnetic spintronics system by strong exchange coupling of Mn2Au and Permalloy," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    4. Lin Huang & Yanzhang Cao & Hongsong Qiu & Hua Bai & Liyang Liao & Chong Chen & Lei Han & Feng Pan & Biaobing Jin & Cheng Song, 2024. "Terahertz oscillation driven by optical spin-orbit torque," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37569-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.