IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms3682.html
   My bibliography  Save this article

High-sensitivity accelerometer composed of ultra-long vertically aligned barium titanate nanowire arrays

Author

Listed:
  • Aneesh Koka

    (University of Florida)

  • Henry A. Sodano

    (University of Florida
    University of Florida)

Abstract

A configuration that shows great promise in sensing applications is vertically aligned piezoelectric nanowire arrays that allow facile interfacing with electrical interconnects. Nano-electromechanical systems developed using piezoelectric nanowires have gained interest primarily for their potential in energy harvesting applications, because they are able to convert several different sources of mechanical energy into useful electrical power. To date, no results have demonstrated the capability to use aligned piezoelectric nanowire arrays as a highly accurate nano-electromechanical system based dynamic sensor with a wide operating bandwidth and unity coherence. Here we report the growth of vertically aligned (~45 μm long) barium titanate nanowire arrays, realized through a two-step hydrothermal synthesis approach, and demonstrate their use as an accurate accelerometer. High sensitivity of up to 50 mV g−1 is observed from the sensor composed of vertically aligned barium titanate nanowire arrays, thus providing performance comparable to many of the commercial accelerometer systems.

Suggested Citation

  • Aneesh Koka & Henry A. Sodano, 2013. "High-sensitivity accelerometer composed of ultra-long vertically aligned barium titanate nanowire arrays," Nature Communications, Nature, vol. 4(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3682
    DOI: 10.1038/ncomms3682
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms3682
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms3682?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gyoung-Ja Lee & Won-Ju Hwang & Jin-Ju Park & Min-Ku Lee, 2019. "Study of Sensitive Parameters on the Sensor Performance of a Compression-Type Piezoelectric Accelerometer Based on the Meta-Model," Energies, MDPI, vol. 12(7), pages 1-11, April.
    2. Chong Li & Xinxin Liao & Zhi-Ke Peng & Guang Meng & Qingbo He, 2023. "Highly sensitive and broadband meta-mechanoreceptor via mechanical frequency-division multiplexing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Pengfei Xu & Dazhi Wang & Jianqiao He & Yichang Cui & Liangkun Lu & Yikang Li & Xiangji Chen & Chang Liu & Liujia Suo & Tongqun Ren & Tiesheng Wang & Yan Cui, 2024. "A zinc oxide resonant nano-accelerometer with ultra-high sensitivity," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.