IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms2960.html
   My bibliography  Save this article

Capture and conversion of CO2 at ambient conditions by a conjugated microporous polymer

Author

Listed:
  • Yong Xie

    (State Key Laboratory of Molecular Reaction Dynamics, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
    Hubei Key Laboratory of Natural Products Research and Development, College of Chemistry and Life Sciences, China Three Gorges University)

  • Ting-Ting Wang

    (State Key Laboratory of Molecular Reaction Dynamics, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences)

  • Xiao-Huan Liu

    (State Key Laboratory of Molecular Reaction Dynamics, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences)

  • Kun Zou

    (Hubei Key Laboratory of Natural Products Research and Development, College of Chemistry and Life Sciences, China Three Gorges University)

  • Wei-Qiao Deng

    (State Key Laboratory of Molecular Reaction Dynamics, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences)

Abstract

Conjugated microporous polymers are a new class of porous materials with an extended π-conjugation in an amorphous organic framework. Owing to the wide-ranging flexibility in the choice and design of components and the available control of pore parameters, these polymers can be tailored for use in various applications, such as gas storage, electronics and catalysis. Here we report a class of cobalt/aluminium-coordinated conjugated microporous polymers that exhibit outstanding CO2 capture and conversion performance at atmospheric pressure and room temperature. These polymers can store CO2 with adsorption capacities comparable to metal-organic frameworks. The cobalt-coordinated conjugated microporous polymers can also simultaneously function as heterogeneous catalysts for the reaction of CO2 and propylene oxide at atmospheric pressure and room temperature, wherein the polymers demonstrate better efficiency than a homogeneous salen-cobalt catalyst. By combining the functions of gas storage and catalysts, this strategy provides a direction for cost-effective CO2 reduction processes.

Suggested Citation

  • Yong Xie & Ting-Ting Wang & Xiao-Huan Liu & Kun Zou & Wei-Qiao Deng, 2013. "Capture and conversion of CO2 at ambient conditions by a conjugated microporous polymer," Nature Communications, Nature, vol. 4(1), pages 1-7, October.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2960
    DOI: 10.1038/ncomms2960
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms2960
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms2960?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bisi Olaniyan & Basudeb Saha, 2020. "Comparison of Catalytic Activity of ZIF-8 and Zr/ZIF-8 for Greener Synthesis of Chloromethyl Ethylene Carbonate by CO 2 Utilization," Energies, MDPI, vol. 13(3), pages 1-25, January.
    2. Bisi Olaniyan & Basudeb Saha, 2020. "Multiobjective Optimization for the Greener Synthesis of Chloromethyl Ethylene Carbonate by CO 2 and Epichlorohydrin via Response Surface Methodology," Energies, MDPI, vol. 13(3), pages 1-27, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.