IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms2695.html
   My bibliography  Save this article

A strong electro-optically active lead-free ferroelectric integrated on silicon

Author

Listed:
  • Stefan Abel

    (IBM Research—Zurich)

  • Thilo Stöferle

    (IBM Research—Zurich)

  • Chiara Marchiori

    (IBM Research—Zurich)

  • Christophe Rossel

    (IBM Research—Zurich)

  • Marta D. Rossell

    (Electron Microscopy Center, Empa, Swiss Federal Laboratories for Materials Science and Technology)

  • Rolf Erni

    (Electron Microscopy Center, Empa, Swiss Federal Laboratories for Materials Science and Technology)

  • Daniele Caimi

    (IBM Research—Zurich)

  • Marilyne Sousa

    (IBM Research—Zurich)

  • Alexei Chelnokov

    (CEA, LETI, MINATEC, DOPT)

  • Bert J. Offrein

    (IBM Research—Zurich)

  • Jean Fompeyrine

    (IBM Research—Zurich)

Abstract

The development of silicon photonics could greatly benefit from the linear electro-optical properties, absent in bulk silicon, of ferroelectric oxides, as a novel way to seamlessly connect the electrical and optical domain. Of all oxides, barium titanate exhibits one of the largest linear electro-optical coefficients, which has however not yet been explored for thin films on silicon. Here we report on the electro-optical properties of thin barium titanate films epitaxially grown on silicon substrates. We extract a large effective Pockels coefficient of reff=148 pm V−1, which is five times larger than in the current standard material for electro-optical devices, lithium niobate. We also reveal the tensor nature of the electro-optical properties, as necessary for properly designing future devices, and furthermore unambiguously demonstrate the presence of ferroelectricity. The integration of electro-optical active films on silicon could pave the way towards power-efficient, ultra-compact integrated devices, such as modulators, tuning elements and bistable switches.

Suggested Citation

  • Stefan Abel & Thilo Stöferle & Chiara Marchiori & Christophe Rossel & Marta D. Rossell & Rolf Erni & Daniele Caimi & Marilyne Sousa & Alexei Chelnokov & Bert J. Offrein & Jean Fompeyrine, 2013. "A strong electro-optically active lead-free ferroelectric integrated on silicon," Nature Communications, Nature, vol. 4(1), pages 1-6, June.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2695
    DOI: 10.1038/ncomms2695
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms2695
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms2695?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. W. Lee & K. Eom & T. R. Paudel & B. Wang & H. Lu & H. X. Huyan & S. Lindemann & S. Ryu & H. Lee & T. H. Kim & Y. Yuan & J. A. Zorn & S. Lei & W. P. Gao & T. Tybell & V. Gopalan & X. Q. Pan & A. Gru, 2021. "In-plane quasi-single-domain BaTiO3 via interfacial symmetry engineering," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Liyan Dai & Jinyan Zhao & Jingrui Li & Bohan Chen & Shijie Zhai & Zhongying Xue & Zengfeng Di & Boyuan Feng & Yanxiao Sun & Yunyun Luo & Ming Ma & Jie Zhang & Sunan Ding & Libo Zhao & Zhuangde Jiang &, 2022. "Highly heterogeneous epitaxy of flexoelectric BaTiO3-δ membrane on Ge," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.