IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v3y2012i1d10.1038_ncomms1751.html
   My bibliography  Save this article

Enhanced electromechanical response of ferroelectrics due to charged domain walls

Author

Listed:
  • Tomas Sluka

    (Ceramics Laboratory, Swiss Federal Institute of Technology)

  • Alexander K. Tagantsev

    (Ceramics Laboratory, Swiss Federal Institute of Technology)

  • Dragan Damjanovic

    (Ceramics Laboratory, Swiss Federal Institute of Technology)

  • Maxim Gureev

    (Ceramics Laboratory, Swiss Federal Institute of Technology)

  • Nava Setter

    (Ceramics Laboratory, Swiss Federal Institute of Technology)

Abstract

While commonly used piezoelectric materials contain lead, non-hazardous, high-performance piezoelectrics are yet to be discovered. Charged domain walls in ferroelectrics are considered inactive with regards to the piezoelectric response and, therefore, are largely ignored in this search. Here we demonstrate a mechanism that leads to a strong enhancement of the dielectric and piezoelectric properties in ferroelectrics with increasing density of charged domain walls. We show that an incomplete compensation of bound polarization charge at these walls creates a stable built-in depolarizing field across each domain leading to increased electromechanical response. Our model clarifies a long-standing unexplained effect of domain wall density on macroscopic properties of domain-engineered ferroelectrics. We show that non-toxic ferroelectrics like BaTiO3 with dense patterns of charged domain walls are expected to have strongly enhanced piezoelectric properties, thus suggesting a new route to high-performance, lead-free ferroelectrics.

Suggested Citation

  • Tomas Sluka & Alexander K. Tagantsev & Dragan Damjanovic & Maxim Gureev & Nava Setter, 2012. "Enhanced electromechanical response of ferroelectrics due to charged domain walls," Nature Communications, Nature, vol. 3(1), pages 1-7, January.
  • Handle: RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms1751
    DOI: 10.1038/ncomms1751
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms1751
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms1751?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moaz Waqar & Haijun Wu & Khuong Phuong Ong & Huajun Liu & Changjian Li & Ping Yang & Wenjie Zang & Weng Heng Liew & Caozheng Diao & Shibo Xi & David J. Singh & Qian He & Kui Yao & Stephen J. Pennycook, 2022. "Origin of giant electric-field-induced strain in faulted alkali niobate films," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Yuyang Wu & Tianjiao Zhang & Deping Guo & Bicheng Li & Ke Pei & Wenbin You & Yiqian Du & Wanchen Xing & Yuxiang Lai & Wei Ji & Yuda Zhao & Renchao Che, 2024. "Stacking selected polarization switching and phase transition in vdW ferroelectric α-In2Se3 junction devices," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms1751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.