IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57256-0.html
   My bibliography  Save this article

Operando impedance spectroscopy with combined dynamic measurements and overvoltage analysis in lithium metal batteries

Author

Listed:
  • Sara Drvarič Talian

    (National institute of chemistry)

  • Gregor Kapun

    (National institute of chemistry)

  • Jože Moškon

    (National institute of chemistry)

  • Robert Dominko

    (National institute of chemistry
    Faculty of Chemistry and Chemical Technology University of Ljubljana
    ALISTORE - European Research Institute)

  • Miran Gaberšček

    (National institute of chemistry
    Faculty of Chemistry and Chemical Technology University of Ljubljana)

Abstract

State-of-the-art battery cells are composed of complex heterogeneous electrode structures that pose significant challenges for analyzing electrochemical processes. Traditional electrochemical impedance spectroscopy (EIS) techniques require system simplification and equilibrium conditions, which limit their ability to capture dynamic processes during battery operation. This paper introduces an advanced method, which combines operando impedance measurements with real-time monitoring of overvoltage in a three-electrode cell setup. This approach enables detailed analysis of processes occurring under actual operating conditions, overcoming limitations of conventional EIS. The benefits of operando EIS are demonstrated through the study of lithium-metal electrodes during repetitive stripping and plating cycles. The technique allows for the identification and quantification of various electrochemical processes, including those related to lithium diffusion, surface morphology changes, and dendritic growth. The findings highlight the importance of operando impedance spectroscopy in providing insights that are not accessible through traditional EIS methods, particularly in understanding complex phenomena such as internal short circuits and lithium pitting. The study emphasizes the necessity of combining operando impedance measurements with equilibrium measurements to achieve a comprehensive understanding of battery behavior during operation.

Suggested Citation

  • Sara Drvarič Talian & Gregor Kapun & Jože Moškon & Robert Dominko & Miran Gaberšček, 2025. "Operando impedance spectroscopy with combined dynamic measurements and overvoltage analysis in lithium metal batteries," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57256-0
    DOI: 10.1038/s41467-025-57256-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57256-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57256-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David T. Boyle & William Huang & Hansen Wang & Yuzhang Li & Hao Chen & Zhiao Yu & Wenbo Zhang & Zhenan Bao & Yi Cui, 2021. "Corrosion of lithium metal anodes during calendar ageing and its microscopic origins," Nature Energy, Nature, vol. 6(5), pages 487-494, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyeokjin Kwon & Hongsin Kim & Jaemin Hwang & Wonsik Oh & Youngil Roh & Dongseok Shin & Hee-Tak Kim, 2024. "Borate–pyran lean electrolyte-based Li-metal batteries with minimal Li corrosion," Nature Energy, Nature, vol. 9(1), pages 57-69, January.
    2. Chengbin Jin & Yiyu Huang & Lanhang Li & Guoying Wei & Hongyan Li & Qiyao Shang & Zhijin Ju & Gongxun Lu & Jiale Zheng & Ouwei Sheng & Xinyong Tao, 2023. "A corrosion inhibiting layer to tackle the irreversible lithium loss in lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Qing Zhao & Yue Deng & Nyalaliska W. Utomo & Jingxu Zheng & Prayag Biswal & Jiefu Yin & Lynden A. Archer, 2021. "On the crystallography and reversibility of lithium electrodeposits at ultrahigh capacity," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Yuqiang Zeng & Fengyu Shen & Buyi Zhang & Jaeheon Lee & Divya Chalise & Qiye Zheng & Yanbao Fu & Sumanjeet Kaur & Sean D. Lubner & Vincent S. Battaglia & Bryan D. McCloskey & Michael C. Tucker & Ravi , 2023. "Nonintrusive thermal-wave sensor for operando quantification of degradation in commercial batteries," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Capkova, Dominika & Knap, Vaclav & Fedorkova, Andrea Strakova & Stroe, Daniel-Ioan, 2023. "Investigation of the temperature and DOD effect on the performance-degradation behavior of lithium–sulfur pouch cells during calendar aging," Applied Energy, Elsevier, vol. 332(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57256-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.