IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56769-y.html
   My bibliography  Save this article

In-depth analysis of 17,115 rice transcriptomes reveals extensive viral diversity in rice plants

Author

Listed:
  • Yu Zhu

    (University of Science and Technology of China
    University of Science and Technology of China)

  • Ali Raza

    (University of Science and Technology of China
    University of Science and Technology of China)

  • Qing Bai

    (University of Science and Technology of China
    University of Science and Technology of China)

  • Chengwu Zou

    (Guangxi University)

  • Jiangshuai Niu

    (Fujian Agriculture and Forestry University)

  • Zhongxin Guo

    (Fujian Agriculture and Forestry University)

  • Qingfa Wu

    (University of Science and Technology of China
    University of Science and Technology of China)

Abstract

Rice viruses seriously threaten rice cultivation and cause significant economic losses, but they have not yet been systematically identified, with only 20 rice-infecting viruses reported. Here, we perform a large-scale analysis of 17,115 RNA-seq libraries spanning 24 Oryza species across 51 countries. Using de novo assembly and homology-based methods, we identify 810 complete or near-complete viruses, including 276 known viruses and 534 novel viruses. Given the high divergence and atypical genome organizations of novel viruses, more than a half of them are tentatively assigned to 1 new order, 61 new families, and at least 104 new genera. Utilizing homology-independent approaches, we additionally identify 49 divergent RNA-dependent RNA polymerases (RdRPs), which are confirmed by protein structural alignment. Furthermore, we analyze the metadata of related Sequence Read Archive (SRA) libraries and estimated viral abundance in each library, leading to the screening of 427 viruses closely associated with rice plants. Overall, our study vastly expands the viral diversity in rice plants, providing insights for the prevention and control of viral disease.

Suggested Citation

  • Yu Zhu & Ali Raza & Qing Bai & Chengwu Zou & Jiangshuai Niu & Zhongxin Guo & Qingfa Wu, 2025. "In-depth analysis of 17,115 rice transcriptomes reveals extensive viral diversity in rice plants," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56769-y
    DOI: 10.1038/s41467-025-56769-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56769-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56769-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marco Forgia & Beatriz Navarro & Stefania Daghino & Amelia Cervera & Andreas Gisel & Silvia Perotto & Dilzara N. Aghayeva & Mary F. Akinyuwa & Emanuela Gobbi & Ivan N. Zheludev & Robert C. Edgar & Ray, 2023. "Hybrids of RNA viruses and viroid-like elements replicate in fungi," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Robert C. Edgar & Brie Taylor & Victor Lin & Tomer Altman & Pierre Barbera & Dmitry Meleshko & Dan Lohr & Gherman Novakovsky & Benjamin Buchfink & Basem Al-Shayeb & Jillian F. Banfield & Marcos Peña &, 2022. "Petabase-scale sequence alignment catalyses viral discovery," Nature, Nature, vol. 602(7895), pages 142-147, February.
    3. Andrea M. Fetters & Paul G. Cantalupo & Na Wei & Maria Teresa Sáenz Robles & Aiden M. Stanley & Jessica D. Stephens & James M. Pipas & Tia-Lynn Ashman, 2022. "The pollen virome of wild plants and its association with variation in floral traits and land use," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Natalia Quinones-Olvera & Siân V. Owen & Lucy M. McCully & Maximillian G. Marin & Eleanor A. Rand & Alice C. Fan & Oluremi J. Martins Dosumu & Kay Paul & Cleotilde E. Sanchez Castaño & Rachel Petherbr, 2024. "Diverse and abundant phages exploit conjugative plasmids," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Mohammed Alser & Julien Eudine & Onur Mutlu, 2025. "Taming large-scale genomic analyses via sparsified genomics," Nature Communications, Nature, vol. 16(1), pages 1-21, December.
    3. Jiahui Lin & Hengyi Dai & Jing Yuan & Caixian Tang & Bin Ma & Jianming Xu, 2024. "Arsenic-induced enhancement of diazotrophic recruitment and nitrogen fixation in Pteris vittata rhizosphere," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Eric Ros-Moner & Tamara Jiménez-Góngora & Luis Villar-Martín & Lana Vogrinec & Víctor M. González-Miguel & Denis Kutnjak & Ignacio Rubio-Somoza, 2024. "Conservation of molecular responses upon viral infection in the non-vascular plant Marchantia polymorpha," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. David Hueting & Karen Schriever & Rui Sun & Stelios Vlachiotis & Fanglei Zuo & Likun Du & Helena Persson & Camilla Hofström & Mats Ohlin & Karin Walldén & Marcus Buggert & Lennart Hammarström & Harold, 2023. "Design, structure and plasma binding of ancestral β-CoV scaffold antigens," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Marco Forgia & Beatriz Navarro & Stefania Daghino & Amelia Cervera & Andreas Gisel & Silvia Perotto & Dilzara N. Aghayeva & Mary F. Akinyuwa & Emanuela Gobbi & Ivan N. Zheludev & Robert C. Edgar & Ray, 2023. "Hybrids of RNA viruses and viroid-like elements replicate in fungi," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56769-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.