IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56716-x.html
   My bibliography  Save this article

Nanobody-thioesterase chimeras to specifically target protein palmitoylation

Author

Listed:
  • Chien-Wen Kuo

    (University of Glasgow)

  • Caglar Gök

    (University of Glasgow
    University of Lincoln)

  • Hannah Fulton

    (University of Glasgow)

  • Eleanor Dickson-Murray

    (University of Glasgow)

  • Samuel Adu

    (University of Glasgow)

  • Emily K. Gallen

    (University of Glasgow
    Harvard Medical School)

  • Sheon Mary

    (University of Glasgow)

  • Alan D. Robertson

    (University of Glasgow)

  • Fiona Jordan

    (University of Glasgow)

  • Emma Dunning

    (University of Glasgow)

  • William Mullen

    (University of Glasgow)

  • Godfrey L. Smith

    (University of Glasgow)

  • William Fuller

    (University of Glasgow)

Abstract

The complexity of the cellular proteome is massively expanded by a repertoire of chemically distinct reversible post-translational modifications (PTMs) that control protein localisation, interactions, and function. The temporal and spatial control of these PTMs is central to organism physiology, and mis-regulation of PTMs is a hallmark of many diseases. Here we present an approach to manipulate PTMs on target proteins using nanobodies fused to enzymes that control these PTMs. Anti-GFP nanobodies fused to thioesterases (which depalmitoylate protein cysteines) depalmitoylate GFP tagged substrates. A chemogenetic approach to enhance nanobody affinity for its target enables temporal control of target depalmitoylation. Using a thioesterase fused to a nanobody directed against the Ca(v)1.2 beta subunit we reduce palmitoylation of the Ca(v)1.2 alpha subunit, modifying the channel’s voltage dependence and arrhythmia susceptibility in stem cell derived cardiac myocytes. We conclude that nanobody enzyme chimeras represent an approach to specifically manipulate PTMs, with applications in both the laboratory and the clinic.

Suggested Citation

  • Chien-Wen Kuo & Caglar Gök & Hannah Fulton & Eleanor Dickson-Murray & Samuel Adu & Emily K. Gallen & Sheon Mary & Alan D. Robertson & Fiona Jordan & Emma Dunning & William Mullen & Godfrey L. Smith & , 2025. "Nanobody-thioesterase chimeras to specifically target protein palmitoylation," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56716-x
    DOI: 10.1038/s41467-025-56716-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56716-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56716-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiaofeng Sun & Chengjian Zhou & Simin Xia & Xi Chen, 2023. "Small molecule-nanobody conjugate induced proximity controls intracellular processes and modulates endogenous unligandable targets," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Kimberly L. Dodge-Kafka & Joseph Soughayer & Genevieve C. Pare & Jennifer J. Carlisle Michel & Lorene K. Langeberg & Michael S. Kapiloff & John D. Scott, 2005. "The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathways," Nature, Nature, vol. 437(7058), pages 574-578, September.
    3. Zifan Pei & Yucheng Xiao & Jingwei Meng & Andy Hudmon & Theodore R. Cummins, 2016. "Cardiac sodium channel palmitoylation regulates channel availability and myocyte excitability with implications for arrhythmia generation," Nature Communications, Nature, vol. 7(1), pages 1-13, November.
    4. Guoxia Liu & Arianne Papa & Alexander N. Katchman & Sergey I. Zakharov & Daniel Roybal & Jessica A. Hennessey & Jared Kushner & Lin Yang & Bi-Xing Chen & Alexander Kushnir & Katerina Dangas & Steven P, 2020. "Mechanism of adrenergic CaV1.2 stimulation revealed by proximity proteomics," Nature, Nature, vol. 577(7792), pages 695-700, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jason W Locasale & Arup K Chakraborty, 2008. "Regulation of Signal Duration and the Statistical Dynamics of Kinase Activation by Scaffold Proteins," PLOS Computational Biology, Public Library of Science, vol. 4(6), pages 1-12, June.
    2. Declan Manning & L. Fernando Santana, 2022. "Regulating voltage-gated ion channels with nanobodies," Nature Communications, Nature, vol. 13(1), pages 1-2, December.
    3. Travis J. Morgenstern & Neha Nirwan & Erick O. Hernández-Ochoa & Hugo Bibollet & Papiya Choudhury & Yianni D. Laloudakis & Manu Johny & Roger A. Bannister & Martin F. Schneider & Daniel L. Minor & Hen, 2022. "Selective posttranslational inhibition of CaVβ1-associated voltage-dependent calcium channels with a functionalized nanobody," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    4. Reidun Aesoy & Haruna Muwonge & Kathrine S Asrud & Misbah Sabir & Solveig L Witsoe & Ronja Bjornstad & Reidun K Kopperud & Erling A Hoivik & Stein Ove Doskeland & Marit Bakke, 2018. "Deletion of exchange proteins directly activated by cAMP (Epac) causes defects in hippocampal signaling in female mice," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-25, July.
    5. Julian Brands & Sergi Bravo & Lars Jürgenliemke & Lukas Grätz & Hannes Schihada & Fabian Frechen & Judith Alenfelder & Cy Pfeil & Paul Georg Ohse & Suzune Hiratsuka & Kouki Kawakami & Luna C. Schmacke, 2024. "A molecular mechanism to diversify Ca2+ signaling downstream of Gs protein-coupled receptors," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    6. Maartje Westhoff & Silvia G. Villar & Taylor L. Voelker & Phung N. Thai & Heather C. Spooner & Alexandre D. Costa & Padmini Sirish & Nipavan Chiamvimonvat & Eamonn J. Dickson & Rose E. Dixon, 2024. "BIN1 knockdown rescues systolic dysfunction in aging male mouse hearts," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    7. Dingxi Zhou & Mariana Borsa & Daniel J. Puleston & Susanne Zellner & Jesusa Capera & Sharon Sanderson & Martina Schifferer & Svenja S. Hester & Xin Ge & Roman Fischer & Luke Jostins & Christian Behren, 2022. "Mapping autophagosome contents identifies interleukin-7 receptor-α as a key cargo modulating CD4+ T cell proliferation," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56716-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.