IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56329-4.html
   My bibliography  Save this article

Unravelling genomic drivers of speciation in Musa through genome assemblies of wild banana ancestors

Author

Listed:
  • Guillaume Martin

    (UMR AGAP Institut
    Institut Agro)

  • Benjamin Istace

    (Université Paris-Saclay)

  • Franc-Christophe Baurens

    (UMR AGAP Institut
    Institut Agro)

  • Caroline Belser

    (Université Paris-Saclay)

  • Catherine Hervouet

    (UMR AGAP Institut
    Institut Agro)

  • Karine Labadie

    (Université Paris-Saclay)

  • Corinne Cruaud

    (Université Paris-Saclay)

  • Benjamin Noel

    (Université Paris-Saclay)

  • Chantal Guiougou

    (Institut Agro
    UMR AGAP Institut)

  • Frederic Salmon

    (Institut Agro
    UMR AGAP Institut)

  • Joël Mahadeo

    (Institut Agro
    CRB-PT)

  • Fajarudin Ahmad

    (BRIN)

  • Hugo A. Volkaert

    (Kasetsart University Kamphaengsaen Campus
    Center of Excellence on Agricultural Biotechnology (AG-BIO/MHESI))

  • Gaëtan Droc

    (UMR AGAP Institut
    Institut Agro)

  • Mathieu Rouard

    (Institut Agro
    Parc Scientifique Agropolis II)

  • Julie Sardos

    (Institut Agro
    Parc Scientifique Agropolis II)

  • Patrick Wincker

    (Université Paris-Saclay)

  • Nabila Yahiaoui

    (UMR AGAP Institut
    Institut Agro)

  • Jean-Marc Aury

    (Université Paris-Saclay)

  • Angélique D’Hont

    (UMR AGAP Institut
    Institut Agro)

Abstract

Hybridization between wild Musa species and subspecies from Southeast Asia is at the origin of cultivated bananas. The genomes of these cultivars are complex mosaics involving nine genetic groups, including two previously unknown contributors. This study provides continuous genome assemblies for six wild genetic groups, one of which represents one of the unknown ancestor, identified as M.acuminata ssp. halabanensis. The second unknown ancestor partially present in a seventh assembly appears related to M. a. ssp. zebrina. These assemblies provide key resources for banana genetics and for improving cultivar assemblies, including that of the emblematic triploid Cavendish. Comparative and phylogenetic analyses reveal an ongoing speciation process within Musa, characterised by large chromosome rearrangements and centromere differentiation through the integration of different types of repeated sequences, including rDNA tandem repeats. This speciation process may have been favoured by reproductive isolation related to the particular context of climate and land connectivity fluctuations in the Southeast Asian region.

Suggested Citation

  • Guillaume Martin & Benjamin Istace & Franc-Christophe Baurens & Caroline Belser & Catherine Hervouet & Karine Labadie & Corinne Cruaud & Benjamin Noel & Chantal Guiougou & Frederic Salmon & Joël Mahad, 2025. "Unravelling genomic drivers of speciation in Musa through genome assemblies of wild banana ancestors," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56329-4
    DOI: 10.1038/s41467-025-56329-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56329-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56329-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mathieu Joron & Lise Frezal & Robert T. Jones & Nicola L. Chamberlain & Siu F. Lee & Christoph R. Haag & Annabel Whibley & Michel Becuwe & Simon W. Baxter & Laura Ferguson & Paul A. Wilkinson & Camilo, 2011. "Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry," Nature, Nature, vol. 477(7363), pages 203-206, September.
    2. Ying Chen & Fan Nie & Shang-Qian Xie & Ying-Feng Zheng & Qi Dai & Thomas Bray & Yao-Xin Wang & Jian-Feng Xing & Zhi-Jian Huang & De-Peng Wang & Li-Juan He & Feng Luo & Jian-Xin Wang & Yi-Zhi Liu & Chu, 2021. "Efficient assembly of nanopore reads via highly accurate and intact error correction," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Piotr Wlodzimierz & Fernando A. Rabanal & Robin Burns & Matthew Naish & Elias Primetis & Alison Scott & Terezie Mandáková & Nicola Gorringe & Andrew J. Tock & Daniel Holland & Katrin Fritschi & Anette, 2023. "Cycles of satellite and transposon evolution in Arabidopsis centromeres," Nature, Nature, vol. 618(7965), pages 557-565, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kunpeng Li & Peng Xu & Jinpeng Wang & Xin Yi & Yuannian Jiao, 2023. "Identification of errors in draft genome assemblies at single-nucleotide resolution for quality assessment and improvement," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Yaohua You & H. M. Suraj & Linda Matz & A. Lorena Herrera Valderrama & Paul Ruigrok & Xiaoqian Shi-Kunne & Frank P. J. Pieterse & Anne Oostlander & Henriek G. Beenen & Edgar A. Chavarro-Carrero & Si Q, 2024. "Botrytis cinerea combines four molecular strategies to tolerate membrane-permeating plant compounds and to increase virulence," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Weikai Chen & Xiangfeng Wang & Jie Sun & Xinrui Wang & Zhangsheng Zhu & Dilay Hazal Ayhan & Shu Yi & Ming Yan & Lili Zhang & Tan Meng & Yu Mu & Jun Li & Dian Meng & Jianxin Bian & Ke Wang & Lu Wang & , 2024. "Two telomere-to-telomere gapless genomes reveal insights into Capsicum evolution and capsaicinoid biosynthesis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Yennifer Mata-Sucre & Marie Krátká & Ludmila Oliveira & Pavel Neumann & Jiří Macas & Veit Schubert & Bruno Huettel & Eduard Kejnovský & Andreas Houben & Andrea Pedrosa-Harand & Gustavo Souza & André M, 2024. "Repeat-based holocentromeres of the woodrush Luzula sylvatica reveal insights into the evolutionary transition to holocentricity," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Ana Paula Zotta Mota & Georgios D. Koutsovoulos & Laetitia Perfus-Barbeoch & Evelin Despot-Slade & Karine Labadie & Jean-Marc Aury & Karine Robbe-Sermesant & Marc Bailly-Bechet & Caroline Belser & Art, 2024. "Unzipped genome assemblies of polyploid root-knot nematodes reveal unusual and clade-specific telomeric repeats," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    6. Paris Veltsos & Luis J. Madrigal-Roca & John K. Kelly, 2024. "Testing the evolutionary theory of inversion polymorphisms in the yellow monkeyflower (Mimulus guttatus)," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Rubén Barcia-Cruz & David Goudenège & Jorge A. Moura de Sousa & Damien Piel & Martial Marbouty & Eduardo P. C. Rocha & Frédérique Roux, 2024. "Phage-inducible chromosomal minimalist islands (PICMIs), a novel family of small marine satellites of virulent phages," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Max Lundberg & Alexander Mackintosh & Anna Petri & Staffan Bensch, 2023. "Inversions maintain differences between migratory phenotypes of a songbird," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56329-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.