IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-55903-0.html
   My bibliography  Save this article

GGCX promotes Eurasian avian-like H1N1 swine influenza virus adaption to interspecies receptor binding

Author

Listed:
  • Jiahui Zou

    (Huazhong Agricultural University)

  • Meijun Jiang

    (Huazhong Agricultural University)

  • Rong Xiao

    (Huazhong Agricultural University)

  • Huimin Sun

    (Huazhong Agricultural University)

  • Hailong Liu

    (Huazhong Agricultural University)

  • Thomas Peacock

    (Imperial College London
    Pirbright)

  • Shaoyu Tu

    (Huazhong Agricultural University)

  • Tong Chen

    (Huazhong Agricultural University)

  • Jinli Guo

    (Huazhong Agricultural University)

  • Yaxin Zhao

    (Huazhong Agricultural University)

  • Wendy Barclay

    (Imperial College London)

  • Shengsong Xie

    (Huazhong Agricultural University
    Hubei Hongshan Laboratory)

  • Hongbo Zhou

    (Huazhong Agricultural University
    Hubei Hongshan Laboratory
    Frontiers Science Center for Animal Breeding and Sustainable Production
    The Cooperative Innovation Center for Sustainable Pig Production)

Abstract

The Eurasian avian-like (EA) H1N1 swine influenza virus (SIV) possesses the capacity to instigate the next influenza pandemic, owing to its heightened affinity for the human-type α-2,6 sialic acid (SA) receptor. Nevertheless, the molecular mechanisms underlying the switch in receptor binding preferences of EA H1N1 SIV remain elusive. In this study, we conduct a comprehensive genome-wide CRISPR/Cas9 knockout screen utilizing EA H1N1 SIV in porcine kidney cells. Knocking out the enzyme gamma glutamyl carboxylase (GGCX) reduces virus replication in vitro and in vivo by inhibiting the carboxylation modification of viral haemagglutinin (HA) and the adhesion of progeny viruses, ultimately impeding the replication of EA H1N1 SIV. Furthermore, GGCX is revealed to be the determinant of the D225E substitution of EA H1N1 SIV, and GGCX-medicated carboxylation modification of HA 225E contributes to the receptor binding adaption of EA H1N1 SIV to the α-2,6 SA receptor. Taken together, our CRISPR screen has elucidated a novel function of GGCX in the support of EA H1N1 SIV adaption for binding to α-2,6 SA receptor. Consequently, GGCX emerges as a prospective antiviral target against the infection and transmission of EA H1N1 SIV.

Suggested Citation

  • Jiahui Zou & Meijun Jiang & Rong Xiao & Huimin Sun & Hailong Liu & Thomas Peacock & Shaoyu Tu & Tong Chen & Jinli Guo & Yaxin Zhao & Wendy Barclay & Shengsong Xie & Hongbo Zhou, 2025. "GGCX promotes Eurasian avian-like H1N1 swine influenza virus adaption to interspecies receptor binding," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-55903-0
    DOI: 10.1038/s41467-025-55903-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-55903-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-55903-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Changzhi Zhao & Hailong Liu & Tianhe Xiao & Zichang Wang & Xiongwei Nie & Xinyun Li & Ping Qian & Liuxing Qin & Xiaosong Han & Jinfu Zhang & Jinxue Ruan & Mengjin Zhu & Yi-Liang Miao & Bo Zuo & Kui Ya, 2020. "CRISPR screening of porcine sgRNA library identifies host factors associated with Japanese encephalitis virus replication," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    2. Xiuyuan Ou & Yan Liu & Xiaobo Lei & Pei Li & Dan Mi & Lili Ren & Li Guo & Ruixuan Guo & Ting Chen & Jiaxin Hu & Zichun Xiang & Zhixia Mu & Xing Chen & Jieyong Chen & Keping Hu & Qi Jin & Jianwei Wang , 2020. "Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    3. Bo Li & Sara M. Clohisey & Bing Shao Chia & Bo Wang & Ang Cui & Thomas Eisenhaure & Lawrence D. Schweitzer & Paul Hoover & Nicholas J. Parkinson & Aharon Nachshon & Nikki Smith & Tim Regan & David Far, 2020. "Genome-wide CRISPR screen identifies host dependency factors for influenza A virus infection," Nature Communications, Nature, vol. 11(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leire Campos-Mata & Benjamin Trinité & Andrea Modrego & Sonia Tejedor Vaquero & Edwards Pradenas & Anna Pons-Grífols & Natalia Rodrigo Melero & Diego Carlero & Silvia Marfil & César Santiago & Dàlia R, 2024. "A monoclonal antibody targeting a large surface of the receptor binding motif shows pan-neutralizing SARS-CoV-2 activity," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. James Brett Case & Samantha Mackin & John M. Errico & Zhenlu Chong & Emily A. Madden & Bradley Whitener & Barbara Guarino & Michael A. Schmid & Kim Rosenthal & Kuishu Ren & Ha V. Dang & Gyorgy Snell &, 2022. "Resilience of S309 and AZD7442 monoclonal antibody treatments against infection by SARS-CoV-2 Omicron lineage strains," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Catherine A. Doyle & Gregory W. Busey & Wesley H. Iobst & Volker Kiessling & Chloe Renken & Hansa Doppalapudi & Marta E. Stremska & Mohan C. Manjegowda & Mohd Arish & Weiming Wang & Shardul Naphade & , 2024. "Endosomal fusion of pH-dependent enveloped viruses requires ion channel TRPM7," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    4. Tingting Li & Xiaojian Han & Chenjian Gu & Hangtian Guo & Huajun Zhang & Yingming Wang & Chao Hu & Kai Wang & Fengjiang Liu & Feiyang Luo & Yanan Zhang & Jie Hu & Wang Wang & Shenglong Li & Yanan Hao , 2021. "Potent SARS-CoV-2 neutralizing antibodies with protective efficacy against newly emerged mutational variants," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    5. Fabian Zech & Daniel Schniertshauer & Christoph Jung & Alexandra Herrmann & Arne Cordsmeier & Qinya Xie & Rayhane Nchioua & Caterina Prelli Bozzo & Meta Volcic & Lennart Koepke & Janis A. Müller & Jan, 2021. "Spike residue 403 affects binding of coronavirus spikes to human ACE2," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    6. Naoko Iwata-Yoshikawa & Masatoshi Kakizaki & Nozomi Shiwa-Sudo & Takashi Okura & Maino Tahara & Shuetsu Fukushi & Ken Maeda & Miyuki Kawase & Hideki Asanuma & Yuriko Tomita & Ikuyo Takayama & Shutoku , 2022. "Essential role of TMPRSS2 in SARS-CoV-2 infection in murine airways," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Yutian Zou & Shaoquan Zheng & Xinhua Xie & Feng Ye & Xiaoqian Hu & Zhi Tian & Shu-Mei Yan & Lu Yang & Yanan Kong & Yuhui Tang & Wenwen Tian & Jindong Xie & Xinpei Deng & Yan Zeng & Zhe-Sheng Chen & Ha, 2022. "N6-methyladenosine regulated FGFR4 attenuates ferroptotic cell death in recalcitrant HER2-positive breast cancer," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    8. Hengrui Liu & Sho Iketani & Arie Zask & Nisha Khanizeman & Eva Bednarova & Farhad Forouhar & Brandon Fowler & Seo Jung Hong & Hiroshi Mohri & Manoj S. Nair & Yaoxing Huang & Nicholas E. S. Tay & Sumin, 2022. "Development of optimized drug-like small molecule inhibitors of the SARS-CoV-2 3CL protease for treatment of COVID-19," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    9. Qi Zhang & Weichun Tang & Eduardo Stancanelli & Eunkyung Jung & Zulfeqhar Syed & Vijayakanth Pagadala & Layla Saidi & Catherine Z. Chen & Peng Gao & Miao Xu & Ivan Pavlinov & Bing Li & Wenwei Huang & , 2023. "Host heparan sulfate promotes ACE2 super-cluster assembly and enhances SARS-CoV-2-associated syncytium formation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Milad Haghani & Pegah Varamini, 2021. "Temporal evolution, most influential studies and sleeping beauties of the coronavirus literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 7005-7050, August.
    11. Joseph D. Trimarco & Sarah L. Nelson & Ryan R. Chaparian & Alexandra I. Wells & Nathan B. Murray & Parastoo Azadi & Carolyn B. Coyne & Nicholas S. Heaton, 2022. "Cellular glycan modification by B3GAT1 broadly restricts influenza virus infection," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Wenjuan Dong & Jing Wang & Lei Tian & Jianying Zhang & Erik W. Settles & Chao Qin & Daniel R. Steinken-Kollath & Ashley N. Itogawa & Kimberly R. Celona & Jinhee Yi & Mitchell Bryant & Heather Mead & S, 2023. "Factor Xa cleaves SARS-CoV-2 spike protein to block viral entry and infection," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    13. Uddhav Timilsina & Supawadee Umthong & Emily B. Ivey & Brandon Waxman & Spyridon Stavrou, 2022. "SARS-CoV-2 ORF7a potently inhibits the antiviral effect of the host factor SERINC5," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-55903-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.