IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-55775-w.html
   My bibliography  Save this article

Unconventional hexagonal open Prussian blue analog structures

Author

Listed:
  • Jinwen Yin

    (City University of Hong Kong, Kowloon
    Kowloon)

  • Jing Wang

    (China University of Chinese Academy of Sciences
    Dalian Maritime University)

  • Mingzi Sun

    (The Hong Kong Polytechnic University, Kowloon)

  • Yajie Yang

    (Northeast Normal University)

  • Jia Lyu

    (Chongqing University)

  • Lei Wang

    (The Hong Kong Polytechnic University, Kowloon)

  • Xinglong Dong

    (King Abdullah University of Science and Technology
    Saudi Aramco)

  • Chenliang Ye

    (North China Electric Power University)

  • Haibo Bao

    (Chinese Academy of Sciences)

  • Jun Guo

    (City University of Hong Kong, Kowloon)

  • Bo Chen

    (City University of Hong Kong, Kowloon)

  • Xichen Zhou

    (City University of Hong Kong, Kowloon)

  • Li Zhai

    (City University of Hong Kong, Kowloon)

  • Zijian Li

    (City University of Hong Kong, Kowloon)

  • Zhen He

    (City University of Hong Kong, Kowloon)

  • Qinxin Luo

    (City University of Hong Kong, Kowloon)

  • Xiang Meng

    (City University of Hong Kong, Kowloon
    Kowloon)

  • Yangbo Ma

    (City University of Hong Kong, Kowloon)

  • Jingwen Zhou

    (City University of Hong Kong, Kowloon
    Kowloon)

  • Pengyi Lu

    (City University of Hong Kong, Kowloon
    Kowloon)

  • Yunhao Wang

    (City University of Hong Kong, Kowloon)

  • Wenxin Niu

    (Chinese Academy of Sciences)

  • Zijian Zheng

    (The Hong Kong Polytechnic University, Kowloon)

  • Yu Han

    (King Abdullah University of Science and Technology
    South China University of Technology)

  • Daliang Zhang

    (Chongqing University)

  • Shibo Xi

    (Jurong Island)

  • Ye Yuan

    (Northeast Normal University)

  • Bolong Huang

    (The Hong Kong Polytechnic University, Kowloon)

  • Peng Guo

    (China University of Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zhanxi Fan

    (City University of Hong Kong, Kowloon
    Kowloon
    Kowloon
    City University of Hong Kong Shenzhen Research Institute)

Abstract

Prussian blue analogs (PBAs), as a classical kind of microporous materials, have attracted substantial interests considering their well-defined framework structures, unique physicochemical properties and low cost. However, PBAs typically adopt cubic structure that features small pore size and low specific surface area, which greatly limits their practical applications in various fields ranging from gas adsorption/separation to energy conversion/storage and biomedical treatments. Here we report the facile and general synthesis of unconventional hexagonal open PBA structures. The obtained hexagonal copper hexacyanocobaltate PBA prisms (H-CuCo) demonstrate large pore size and specific surface area of 12.32 Å and 1273 m2 g−1, respectively, well exceeding those (5.48 Å and 443 m2 g−1) of traditional cubic CuCo PBA cubes (C-CuCo). Significantly, H-CuCo exhibits much superior gas uptake capacity over C-CuCo toward carbon dioxide and small hydrocarbon molecules. Mechanism studies reveal that unsaturated Cu sites with planar quadrilateral configurations in H-CuCo enhance the gas adsorption performance.

Suggested Citation

  • Jinwen Yin & Jing Wang & Mingzi Sun & Yajie Yang & Jia Lyu & Lei Wang & Xinglong Dong & Chenliang Ye & Haibo Bao & Jun Guo & Bo Chen & Xichen Zhou & Li Zhai & Zijian Li & Zhen He & Qinxin Luo & Xiang , 2025. "Unconventional hexagonal open Prussian blue analog structures," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55775-w
    DOI: 10.1038/s41467-024-55775-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55775-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55775-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zi-You Yu & Yu Duan & Jian-Dang Liu & Yu Chen & Xiao-Kang Liu & Wei Liu & Tao Ma & Yi Li & Xu-Sheng Zheng & Tao Yao & Min-Rui Gao & Jun-Fa Zhu & Bang-Jiao Ye & Shu-Hong Yu, 2019. "Unconventional CN vacancies suppress iron-leaching in Prussian blue analogue pre-catalyst for boosted oxygen evolution catalysis," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    2. Liu-Chun Wang & Pei-Yu Chiou & Ya-Ping Hsu & Chin-Lai Lee & Chih-Hsuan Hung & Yi-Hsuan Wu & Wen-Jyun Wang & Gia-Ling Hsieh & Ying-Chi Chen & Li-Chan Chang & Wen-Pin Su & Divinah Manoharan & Min-Chiao , 2023. "Prussian blue analog with separated active sites to catalyze water driven enhanced catalytic treatments," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Shi-Kui Geng & Yao Zheng & Shan-Qing Li & Hui Su & Xu Zhao & Jun Hu & Hai-Bo Shu & Mietek Jaroniec & Ping Chen & Qing-Hua Liu & Shi-Zhang Qiao, 2021. "Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst," Nature Energy, Nature, vol. 6(9), pages 904-912, September.
    4. Peng Guo & Jiho Shin & Alex G. Greenaway & Jung Gi Min & Jie Su & Hyun June Choi & Leifeng Liu & Paul A. Cox & Suk Bong Hong & Paul A. Wright & Xiaodong Zou, 2015. "A zeolite family with expanding structural complexity and embedded isoreticular structures," Nature, Nature, vol. 524(7563), pages 74-78, August.
    5. Arkadiy Simonov & Trees De Baerdemaeker & Hanna L. B. Boström & María Laura Ríos Gómez & Harry J. Gray & Dmitry Chernyshov & Alexey Bosak & Hans-Beat Bürgi & Andrew L. Goodwin, 2020. "Hidden diversity of vacancy networks in Prussian blue analogues," Nature, Nature, vol. 578(7794), pages 256-260, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaokui Jin & Lingdong Jiang & Qianjun He, 2024. "Critical learning from industrial catalysis for nanocatalytic medicine," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Yuandong Yan & Ruyi Wang & Qian Zheng & Jiaying Zhong & Weichang Hao & Shicheng Yan & Zhigang Zou, 2023. "Nonredox trivalent nickel catalyzing nucleophilic electrooxidation of organics," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Jun Qi & Yadong Du & Qi Yang & Na Jiang & Jiachun Li & Yi Ma & Yangjun Ma & Xin Zhao & Jieshan Qiu, 2023. "Energy-saving and product-oriented hydrogen peroxide electrosynthesis enabled by electrochemistry pairing and product engineering," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Xintong Gao & Xiaowan Bai & Pengtang Wang & Yan Jiao & Kenneth Davey & Yao Zheng & Shi-Zhang Qiao, 2023. "Boosting urea electrooxidation on oxyanion-engineered nickel sites via inhibited water oxidation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Kaifei Chen & Zhi Yu & Seyed Hesam Mousavi & Ranjeet Singh & Qinfen Gu & Randall Q. Snurr & Paul A. Webley & Gang Kevin Li, 2023. "Regulating adsorption performance of zeolites by pre-activation in electric fields," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Jiachen Li & Yuqiang Ma & Cong Zhang & Chi Zhang & Huijun Ma & Zhaoqi Guo & Ning Liu & Ming Xu & Haixia Ma & Jieshan Qiu, 2023. "Green electrosynthesis of 3,3’-diamino-4,4’-azofurazan energetic materials coupled with energy-efficient hydrogen production over Pt-based catalysts," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Nattapol Ma & Ryo Ohtani & Hung M. Le & Søren S. Sørensen & Ryuta Ishikawa & Satoshi Kawata & Sareeya Bureekaew & Soracha Kosasang & Yoshiyuki Kawazoe & Koji Ohara & Morten M. Smedskjaer & Satoshi Hor, 2022. "Exploration of glassy state in Prussian blue analogues," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Xiubei Yang & Qizheng An & Xuewen Li & Yubin Fu & Shuai Yang & Minghao Liu & Qing Xu & Gaofeng Zeng, 2024. "Charging modulation of the pyridine nitrogen of covalent organic frameworks for promoting oxygen reduction reaction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Mingxing Liang & Yifan Ren & Jun Cui & Xiaochen Zhang & Siyang Xing & Jingjing Lei & Mengyao He & Haijiao Xie & Libo Deng & Fei Yu & Jie Ma, 2024. "Order-in-disordered ultrathin carbon nanostructure with nitrogen-rich defects bridged by pseudographitic domains for high-performance ion capture," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Ziheng Zhang & Maxim Avdeev & Huaican Chen & Wen Yin & Wang Hay Kan & Guang He, 2022. "Lithiated Prussian blue analogues as positive electrode active materials for stable non-aqueous lithium-ion batteries," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    11. Marta Wala-Kapica & Aleksander Gąsior & Artur Maciej & Szymon Smykała & Alicja Kazek-Kęsik & Mehdi Baghayeri & Wojciech Simka, 2024. "One-Pot Fast Electrochemical Synthesis of Ternary Ni-Cu-Fe Particles for Improved Urea Oxidation," Energies, MDPI, vol. 17(21), pages 1-17, October.
    12. Xiaoran Zhang & Xiaorong Zhu & Shuowen Bo & Chen Chen & Mengyi Qiu & Xiaoxiao Wei & Nihan He & Chao Xie & Wei Chen & Jianyun Zheng & Pinsong Chen & San Ping Jiang & Yafei Li & Qinghua Liu & Shuangyin , 2022. "Identifying and tailoring C–N coupling site for efficient urea synthesis over diatomic Fe–Ni catalyst," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Shuoshuo Guo & Yongmeng Wu & Changhong Wang & Ying Gao & Mengyang Li & Bin Zhang & Cuibo Liu, 2022. "Electrocatalytic hydrogenation of quinolines with water over a fluorine-modified cobalt catalyst," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Dongdong Wang & Jiawei Liu & Changlai Wang & Weiyun Zhang & Guangbao Yang & Yun Chen & Xiaodong Zhang & Yinglong Wu & Long Gu & Hongzhong Chen & Wei Yuan & Xiaokai Chen & Guofeng Liu & Bin Gao & Qianw, 2023. "Microbial synthesis of Prussian blue for potentiating checkpoint blockade immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    15. Nikolaj Roth & Andrew L. Goodwin, 2023. "Tuning electronic and phononic states with hidden order in disordered crystals," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Guangming Zhan & Lufa Hu & Hao Li & Jie Dai & Long Zhao & Qian Zheng & Xingyue Zou & Yanbiao Shi & Jiaxian Wang & Wei Hou & Yancai Yao & Lizhi Zhang, 2024. "Highly selective urea electrooxidation coupled with efficient hydrogen evolution," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55775-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.