IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-55638-4.html
   My bibliography  Save this article

OGG1 and MUTYH repair activities promote telomeric 8-oxoguanine induced senescence in human fibroblasts

Author

Listed:
  • Mariarosaria Rosa

    (UPMC Hillman Cancer Center at the University of Pittsburgh)

  • Ryan P. Barnes

    (UPMC Hillman Cancer Center at the University of Pittsburgh
    University of Kansas Medical Center)

  • Ariana C. Detwiler

    (UPMC Hillman Cancer Center at the University of Pittsburgh)

  • Prasanth R. Nyalapatla

    (University of Pittsburgh)

  • Peter Wipf

    (UPMC Hillman Cancer Center at the University of Pittsburgh
    University of Pittsburgh)

  • Patricia L. Opresko

    (UPMC Hillman Cancer Center at the University of Pittsburgh
    University of Pittsburgh School of Medicine
    University of Pittsburgh School of Public Health)

Abstract

Telomeres are hypersensitive to the formation of the common oxidative lesion 8-oxoguanine (8oxoG), which impacts telomere stability and function. OGG1 and MUTYH glycosylases initiate base excision repair (BER) to remove 8oxoG or prevent mutation. Here, we show OGG1 loss or inhibition, or MUTYH loss, partially rescues telomeric 8oxoG-induced premature senescence and associated proinflammatory responses, while loss of both glycosylases causes a near complete rescue in human fibroblasts. Glycosylase deficiency also suppresses 8oxoG-induced telomere fragility and dysfunction, indicating that downstream single-stranded break (SSB) repair intermediates impair telomere replication. Preventing BER initiation suppresses PARylation and confers resistance to the synergistic effects of PARP inhibitors on 8oxoG-induced senescence. However, OGG1 activity is essential for preserving cell growth after chronic telomeric 8oxoG formation, whereas MUTYH promotes senescence to prevent chromosomal instability from unrepaired damage. Our studies reveal that inefficient completion of 8oxoG BER at telomeres triggers cellular senescence via SSB intermediates which disrupt telomere function.

Suggested Citation

  • Mariarosaria Rosa & Ryan P. Barnes & Ariana C. Detwiler & Prasanth R. Nyalapatla & Peter Wipf & Patricia L. Opresko, 2025. "OGG1 and MUTYH repair activities promote telomeric 8-oxoguanine induced senescence in human fibroblasts," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55638-4
    DOI: 10.1038/s41467-024-55638-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55638-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55638-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Namrata Kumar & Arjan F. Theil & Vera Roginskaya & Yasmin Ali & Michael Calderon & Simon C. Watkins & Ryan P. Barnes & Patricia L. Opresko & Alex Pines & Hannes Lans & Wim Vermeulen & Bennett Houten, 2022. "Global and transcription-coupled repair of 8-oxoG is initiated by nucleotide excision repair proteins," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Diana Jurk & Caroline Wilson & João F. Passos & Fiona Oakley & Clara Correia-Melo & Laura Greaves & Gabriele Saretzki & Chris Fox & Conor Lawless & Rhys Anderson & Graeme Hewitt & Sylvia LF Pender & N, 2014. "Chronic inflammation induces telomere dysfunction and accelerates ageing in mice," Nature Communications, Nature, vol. 5(1), pages 1-14, September.
    3. Graeme Hewitt & Diana Jurk & Francisco D.M. Marques & Clara Correia-Melo & Timothy Hardy & Agata Gackowska & Rhys Anderson & Morgan Taschuk & Jelena Mann & João F. Passos, 2012. "Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence," Nature Communications, Nature, vol. 3(1), pages 1-9, January.
    4. Joe Nassour & Robert Radford & Adriana Correia & Javier Miralles Fusté & Brigitte Schoell & Anna Jauch & Reuben J. Shaw & Jan Karlseder, 2019. "Autophagic cell death restricts chromosomal instability during replicative crisis," Nature, Nature, vol. 565(7741), pages 659-663, January.
    5. George E. Ronson & Ann Liza Piberger & Martin R. Higgs & Anna L. Olsen & Grant S. Stewart & Peter J. McHugh & Eva Petermann & Nicholas D. Lakin, 2018. "PARP1 and PARP2 stabilise replication forks at base excision repair intermediates through Fbh1-dependent Rad51 regulation," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    6. Ludmil B. Alexandrov & Jaegil Kim & Nicholas J. Haradhvala & Mi Ni Huang & Alvin Wei Tian Ng & Yang Wu & Arnoud Boot & Kyle R. Covington & Dmitry A. Gordenin & Erik N. Bergstrom & S. M. Ashiqul Islam , 2020. "The repertoire of mutational signatures in human cancer," Nature, Nature, vol. 578(7793), pages 94-101, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cameron Cordero & Kavi P. M. Mehta & Tyler M. Weaver & Justin A. Ling & Bret D. Freudenthal & David Cortez & Steven A. Roberts, 2024. "Contributing factors to the oxidation-induced mutational landscape in human cells," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Yasuhiko Haga & Yoshitaka Sakamoto & Keiko Kajiya & Hitomi Kawai & Miho Oka & Noriko Motoi & Masayuki Shirasawa & Masaya Yotsukura & Shun-Ichi Watanabe & Miyuki Arai & Junko Zenkoh & Kouya Shiraishi &, 2023. "Whole-genome sequencing reveals the molecular implications of the stepwise progression of lung adenocarcinoma," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Ambrocio Sanchez & Pedro Ortega & Ramin Sakhtemani & Lavanya Manjunath & Sunwoo Oh & Elodie Bournique & Alexandrea Becker & Kyumin Kim & Cameron Durfee & Nuri Alpay Temiz & Xiaojiang S. Chen & Reuben , 2024. "Mesoscale DNA features impact APOBEC3A and APOBEC3B deaminase activity and shape tumor mutational landscapes," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Brittany N. Vandenberg & Marian F. Laughery & Cameron Cordero & Dalton Plummer & Debra Mitchell & Jordan Kreyenhagen & Fatimah Albaqshi & Alexander J. Brown & Piotr A. Mieczkowski & John J. Wyrick & S, 2023. "Contributions of replicative and translesion DNA polymerases to mutagenic bypass of canonical and atypical UV photoproducts," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Jonathan C. M. Wan & Dennis Stephens & Lingqi Luo & James R. White & Caitlin M. Stewart & Benoît Rousseau & Dana W. Y. Tsui & Luis A. Diaz, 2022. "Genome-wide mutational signatures in low-coverage whole genome sequencing of cell-free DNA," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Teresa Maria Rosaria Noviello & Anna Maria Giacomo & Francesca Pia Caruso & Alessia Covre & Roberta Mortarini & Giovanni Scala & Maria Claudia Costa & Sandra Coral & Wolf H. Fridman & Catherine Sautès, 2023. "Guadecitabine plus ipilimumab in unresectable melanoma: five-year follow-up and integrated multi-omic analysis in the phase 1b NIBIT-M4 trial," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Thomas R. W. Oliver & Lia Chappell & Rashesh Sanghvi & Lauren Deighton & Naser Ansari-Pour & Stefan C. Dentro & Matthew D. Young & Tim H. H. Coorens & Hyunchul Jung & Tim Butler & Matthew D. C. Nevill, 2022. "Clonal diversification and histogenesis of malignant germ cell tumours," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Rotem Katzir & Noam Rudberg & Keren Yizhak, 2022. "Estimating tumor mutational burden from RNA-sequencing without a matched-normal sample," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Daipayan Banerjee & Kurt Langberg & Salar Abbas & Eric Odermatt & Praveen Yerramothu & Martin Volaric & Matthew A. Reidenbach & Kathy J. Krentz & C. Dustin Rubinstein & David L. Brautigan & Tarek Abba, 2021. "A non-canonical, interferon-independent signaling activity of cGAMP triggers DNA damage response signaling," Nature Communications, Nature, vol. 12(1), pages 1-24, December.
    10. Oriol Pich & Iker Reyes-Salazar & Abel Gonzalez-Perez & Nuria Lopez-Bigas, 2022. "Discovering the drivers of clonal hematopoiesis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Ewart Kuijk & Onno Kranenburg & Edwin Cuppen & Arne Van Hoeck, 2022. "Common anti-cancer therapies induce somatic mutations in stem cells of healthy tissue," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Frederick Richards & Marta J. Llorca-Cardenosa & Jamie Langton & Sara C. Buch-Larsen & Noor F. Shamkhi & Abhishek Bharadwaj Sharma & Michael L. Nielsen & Nicholas D. Lakin, 2023. "Regulation of Rad52-dependent replication fork recovery through serine ADP-ribosylation of PolD3," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Taichi Igarashi & Marianne Mazevet & Takaaki Yasuhara & Kimiyoshi Yano & Akifumi Mochizuki & Makoto Nishino & Tatsuya Yoshida & Yukihiro Yoshida & Nobuhiko Takamatsu & Akihide Yoshimi & Kouya Shiraish, 2023. "An ATR-PrimPol pathway confers tolerance to oncogenic KRAS-induced and heterochromatin-associated replication stress," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    14. Sophie Pénisson & Amaury Lambert & Cristian Tomasetti, 2022. "Evaluating cancer etiology and risk with a mathematical model of tumor evolution," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Sujath Abbas & Oriol Pich & Ginny Devonshire & Shahriar A. Zamani & Annalise Katz-Summercorn & Sarah Killcoyne & Calvin Cheah & Barbara Nutzinger & Nicola Grehan & Nuria Lopez-Bigas & Rebecca C. Fitzg, 2023. "Mutational signature dynamics shaping the evolution of oesophageal adenocarcinoma," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    16. Jenny Kaur Singh & Rebecca Smith & Magdalena B. Rother & Anton J. L. Groot & Wouter W. Wiegant & Kees Vreeken & Ostiane D’Augustin & Robbert Q. Kim & Haibin Qian & Przemek M. Krawczyk & Román González, 2021. "Zinc finger protein ZNF384 is an adaptor of Ku to DNA during classical non-homologous end-joining," Nature Communications, Nature, vol. 12(1), pages 1-21, December.
    17. Pierre Murat & Guillaume Guilbaud & Julian E. Sale, 2024. "DNA replication initiation drives focal mutagenesis and rearrangements in human cancers," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. Sriram Vijayraghavan & Thomas Blouin & James McCollum & Latarsha Porcher & François Virard & Jiri Zavadil & Carol Feghali-Bostwick & Natalie Saini, 2024. "Widespread mutagenesis and chromosomal instability shape somatic genomes in systemic sclerosis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Josefine Radke & Naveed Ishaque & Randi Koll & Zuguang Gu & Elisa Schumann & Lina Sieverling & Sebastian Uhrig & Daniel Hübschmann & Umut H. Toprak & Cristina López & Xavier Pastor Hostench & Simone B, 2022. "The genomic and transcriptional landscape of primary central nervous system lymphoma," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    20. Eline J. M. Bertrums & Jurrian K. Kanter & Lucca L. M. Derks & Mark Verheul & Laurianne Trabut & Markus J. Roosmalen & Henrik Hasle & Evangelia Antoniou & Dirk Reinhardt & Michael N. Dworzak & Nora Mü, 2024. "Selective pressures of platinum compounds shape the evolution of therapy-related myeloid neoplasms," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55638-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.