IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-55375-8.html
   My bibliography  Save this article

Dynamic hydrogen-bonding enables high-performance and mechanically robust organic solar cells processed with non-halogenated solvent

Author

Listed:
  • Haozhe He

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xiaojun Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Jingyuan Zhang

    (Chinese Academy of Sciences)

  • Zekun Chen

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yufei Gong

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Hongmei Zhuo

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xiangxi Wu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yuechen Li

    (Chinese Academy of Sciences
    Shaanxi Normal University)

  • Shijie Wang

    (Xi’an Jiaotong University)

  • Zhaozhao Bi

    (Xi’an Jiaotong University)

  • Bohao Song

    (Xi’an Jiaotong University)

  • Kangkang Zhou

    (Tianjin University)

  • Tongling Liang

    (University of Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Wei Ma

    (Xi’an Jiaotong University)

  • Guanghao Lu

    (Xi’an Jiaotong University)

  • Long Ye

    (Tianjin University)

  • Lei Meng

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Ben Zhang

    (Soochow University)

  • Yaowen Li

    (Soochow University)

  • Yongfang Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Soochow University)

Abstract

Developing active-layer systems with both high performance and mechanical robustness is a crucial step towards achieving future commercialization of flexible and stretchable organic solar cells (OSCs). Herein, we design and synthesize a series of acceptors BTA-C6, BTA-E3, BTA-E6, and BTA-E9, featuring the side chains of hexyl, and 3, 6, and 9 carbon-chain with ethyl ester end groups respectively. Benefiting from suitable phase separation and vertical phase distribution, the PM6:BTA-E3-based OSCs processed by o-xylene exhibit lower energy loss and improved charge transport characteristic and achieve a power conversion efficiency of 19.92% (certified 19.57%), which stands as the highest recorded value in binary OSCs processed by green solvents. Moreover, due to the additional hydrogen-bonding provided by ethyl ester side chain, the PM6:BTA-E3-based active-layer systems achieve enhanced stretchability and thermal stability. Our work reveals the significance of dynamic hydrogen-bonding in improving the photovoltaic performance, mechanical robustness, and morphological stability of OSCs.

Suggested Citation

  • Haozhe He & Xiaojun Li & Jingyuan Zhang & Zekun Chen & Yufei Gong & Hongmei Zhuo & Xiangxi Wu & Yuechen Li & Shijie Wang & Zhaozhao Bi & Bohao Song & Kangkang Zhou & Tongling Liang & Wei Ma & Guanghao, 2025. "Dynamic hydrogen-bonding enables high-performance and mechanically robust organic solar cells processed with non-halogenated solvent," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55375-8
    DOI: 10.1038/s41467-024-55375-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55375-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55375-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chao Li & Jiadong Zhou & Jiali Song & Jinqiu Xu & Huotian Zhang & Xuning Zhang & Jing Guo & Lei Zhu & Donghui Wei & Guangchao Han & Jie Min & Yuan Zhang & Zengqi Xie & Yuanping Yi & He Yan & Feng Gao , 2021. "Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells," Nature Energy, Nature, vol. 6(6), pages 605-613, June.
    2. Kui Jiang & Jie Zhang & Cheng Zhong & Francis R. Lin & Feng Qi & Qian Li & Zhengxing Peng & Werner Kaminsky & Sei-Hum Jang & Jianwei Yu & Xiang Deng & Huawei Hu & Dong Shen & Feng Gao & Harald Ade & M, 2022. "Suppressed recombination loss in organic photovoltaics adopting a planar–mixed heterojunction architecture," Nature Energy, Nature, vol. 7(11), pages 1076-1086, November.
    3. Hongmei Zhuo & Xiaojun Li & Jinyuan Zhang & Can Zhu & Haozhe He & Kan Ding & Jing Li & Lei Meng & Harald Ade & Yongfang Li, 2023. "Precise synthesis and photovoltaic properties of giant molecule acceptors," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Youcai Liang & Difei Zhang & Zerun Wu & Tao Jia & Larry Lüer & Haoran Tang & Ling Hong & Jiabin Zhang & Kai Zhang & Christoph J. Brabec & Ning Li & Fei Huang, 2022. "Organic solar cells using oligomer acceptors for improved stability and efficiency," Nature Energy, Nature, vol. 7(12), pages 1180-1190, December.
    5. Huazhe Liang & Xingqi Bi & Hongbin Chen & Tengfei He & Yi Lin & Yunxin Zhang & Kangqiao Ma & Wanying Feng & Zaifei Ma & Guankui Long & Chenxi Li & Bin Kan & Hongtao Zhang & Oleg A. Rakitin & Xiangjian, 2023. "A rare case of brominated small molecule acceptors for high-efficiency organic solar cells," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Guangpei Sun & Xin Jiang & Xiaojun Li & Lei Meng & Jinyuan Zhang & Shucheng Qin & Xiaolei Kong & Jing Li & Jingming Xin & Wei Ma & Yongfang Li, 2022. "High performance polymerized small molecule acceptor by synergistic optimization on π-bridge linker and side chain," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Rui Zeng & Lei Zhu & Ming Zhang & Wenkai Zhong & Guanqing Zhou & Jiaxing Zhuang & Tianyu Hao & Zichun Zhou & Libo Zhou & Nicolai Hartmann & Xiaonan Xue & Hao Jing & Fei Han & Yiming Bai & Hongbo Wu & , 2023. "All-polymer organic solar cells with nano-to-micron hierarchical morphology and large light receiving angle," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuanyuan Jiang & Yixin Li & Feng Liu & Wenxuan Wang & Wenli Su & Wuyue Liu & Songjun Liu & Wenkai Zhang & Jianhui Hou & Shengjie Xu & Yuanping Yi & Xiaozhang Zhu, 2023. "Suppressing electron-phonon coupling in organic photovoltaics for high-efficiency power conversion," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Hongmei Zhuo & Xiaojun Li & Jinyuan Zhang & Can Zhu & Haozhe He & Kan Ding & Jing Li & Lei Meng & Harald Ade & Yongfang Li, 2023. "Precise synthesis and photovoltaic properties of giant molecule acceptors," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Chen Chen & Liang Wang & Weiyi Xia & Ke Qiu & Chuanhang Guo & Zirui Gan & Jing Zhou & Yuandong Sun & Dan Liu & Wei Li & Tao Wang, 2024. "Molecular interaction induced dual fibrils towards organic solar cells with certified efficiency over 20%," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Tao Jia & Tao Lin & Yang Yang & Lunbi Wu & Huimin Cai & Zesheng Zhang & Kangfeng Lin & Yulong Hai & Yongmin Luo & Ruijie Ma & Yao Li & Top Archie Peña & Sha Liu & Jie Zhang & Chunchen Liu & Junwu Chen, 2025. "A dendritic hexamer acceptor enables 19.4% efficiency with exceptional stability in organic solar cells," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    5. Yang Bai & Ze Zhang & Qiuju Zhou & Hua Geng & Qi Chen & Seoyoung Kim & Rui Zhang & Cen Zhang & Bowen Chang & Shangyu Li & Hongyuan Fu & Lingwei Xue & Haiqiao Wang & Wenbin Li & Weihua Chen & Mengyuan , 2023. "Geometry design of tethered small-molecule acceptor enables highly stable and efficient polymer solar cells," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Yilei Wu & Yue Yuan & Diego Sorbelli & Christina Cheng & Lukas Michalek & Hao-Wen Cheng & Vishal Jindal & Song Zhang & Garrett LeCroy & Enrique D. Gomez & Scott T. Milner & Alberto Salleo & Giulia Gal, 2024. "Tuning polymer-backbone coplanarity and conformational order to achieve high-performance printed all-polymer solar cells," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Xinjun He & Feng Qi & Xinhui Zou & Yanxun Li & Heng Liu & Xinhui Lu & Kam Sing Wong & Alex K.-Y. Jen & Wallace C. H. Choy, 2024. "Selenium substitution for dielectric constant improvement and hole-transfer acceleration in non-fullerene organic solar cells," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Congqi Li & Guo Yao & Xiaobin Gu & Jikai Lv & Yuqi Hou & Qijie Lin & Na Yu & Misbah Sehar Abbasi & Xin Zhang & Jianqi Zhang & Zheng Tang & Qian Peng & Chunfeng Zhang & Yunhao Cai & Hui Huang, 2024. "Highly efficient organic solar cells enabled by suppressing triplet exciton formation and non-radiative recombination," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Xuelin Wang & Qianqian Sun & Jinhua Gao & Jian Wang & Chunyu Xu & Xiaoling Ma & Fujun Zhang, 2021. "Recent Progress of Organic Photovoltaics with Efficiency over 17%," Energies, MDPI, vol. 14(14), pages 1-27, July.
    10. Chieh-Ming Hung & Sheng-Fu Wang & Wei-Chih Chao & Jian-Liang Li & Bo-Han Chen & Chih-Hsuan Lu & Kai-Yen Tu & Shang-Da Yang & Wen-Yi Hung & Yun Chi & Pi-Tai Chou, 2024. "High-performance near-infrared OLEDs maximized at 925 nm and 1022 nm through interfacial energy transfer," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Hao Zhang & Chenyang Tian & Ziqi Zhang & Meiling Xie & Jianqi Zhang & Lingyun Zhu & Zhixiang Wei, 2023. "Concretized structural evolution supported assembly-controlled film-forming kinetics in slot-die coated organic photovoltaics," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Yanan Shi & Yilin Chang & Kun Lu & Zhihao Chen & Jianqi Zhang & Yangjun Yan & Dingding Qiu & Yanan Liu & Muhammad Abdullah Adil & Wei Ma & Xiaotao Hao & Lingyun Zhu & Zhixiang Wei, 2022. "Small reorganization energy acceptors enable low energy losses in non-fullerene organic solar cells," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Zhen Wang & Yu Guo & Xianzhao Liu & Wenchao Shu & Guangchao Han & Kan Ding & Subhrangsu Mukherjee & Nan Zhang & Hin-Lap Yip & Yuanping Yi & Harald Ade & Philip C. Y. Chow, 2024. "The role of interfacial donor–acceptor percolation in efficient and stable all-polymer solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Bin Liu & Huiliang Sun & Jin-Woo Lee & Zhengyan Jiang & Junqin Qiao & Junwei Wang & Jie Yang & Kui Feng & Qiaogan Liao & Mingwei An & Bolin Li & Dongxue Han & Baomin Xu & Hongzhen Lian & Li Niu & Bumj, 2023. "Efficient and stable organic solar cells enabled by multicomponent photoactive layer based on one-pot polymerization," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Sri Harish Kumar Paleti & Sandra Hultmark & Jianhua Han & Yuanfan Wen & Han Xu & Si Chen & Emmy Järsvall & Ishita Jalan & Diego Rosas Villalva & Anirudh Sharma & Jafar. I. Khan & Ellen Moons & Ruipeng, 2023. "Hexanary blends: a strategy towards thermally stable organic photovoltaics," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Guangpei Sun & Xin Jiang & Xiaojun Li & Lei Meng & Jinyuan Zhang & Shucheng Qin & Xiaolei Kong & Jing Li & Jingming Xin & Wei Ma & Yongfang Li, 2022. "High performance polymerized small molecule acceptor by synergistic optimization on π-bridge linker and side chain," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Caixuan Wang & Xiaoming Ma & Dan Deng & Hao Zhang & Rui Sun & Jianqi Zhang & Lili Zhang & Mengying Wu & Jie Min & Zhi-Guo Zhang & Zhixiang Wei, 2024. "Giant dimeric donors for all-giant-oligomer organic solar cells with efficiency over 16% and superior photostability," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Hongyue Tian & Mingxin Zhao & Xiaoling Ma & Chunyu Xu & Wenjing Xu & Zhongyuan Liu & Miao Zhang & Fujun Zhang, 2023. "Critical Progress of Polymer Solar Cells with a Power Conversion Efficiency over 18%," Energies, MDPI, vol. 16(11), pages 1-34, June.
    19. Kai Zhang & Yang Shen & Long-Xue Cao & Zhen-Huang Su & Xin-Mei Hu & Shi-Chi Feng & Bing-Feng Wang & Feng-Ming Xie & Hao-Ze Li & Xingyu Gao & Yan-Qing Li & Jian-Xin Tang, 2024. "Nondestructive halide exchange via SN2-like mechanism for efficient blue perovskite light-emitting diodes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    20. Wei Gao & Ruijie Ma & Top Archie Dela Peña & Cenqi Yan & Hongxiang Li & Mingjie Li & Jiaying Wu & Pei Cheng & Cheng Zhong & Zhanhua Wei & Alex K.-Y. Jen & Gang Li, 2024. "Efficient all-small-molecule organic solar cells processed with non-halogen solvent," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55375-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.