IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-54574-7.html
   My bibliography  Save this article

Resonant inelastic X-ray scattering tools to count 5 f electrons of actinides and probe bond covalency

Author

Listed:
  • Bianca Schacherl

    (Institute for Nuclear Waste Disposal (INE)
    Chemical Sciences Division (CSD))

  • Michelangelo Tagliavini

    (Institute for Theoretical Physics (ITP))

  • Hanna Kaufmann-Heimeshoff

    (Institute for Nuclear Waste Disposal (INE))

  • Jörg Göttlicher

    (Institute for Photon Science and Synchrotron Radiation (IPS))

  • Marinella Mazzanti

    (Ecole Polytechnique Fédérale de Lausanne (EPFL))

  • Karin Popa

    (Joint Research Centre Karlsruhe (JRC))

  • Olaf Walter

    (Joint Research Centre Karlsruhe (JRC))

  • Tim Pruessmann

    (Institute for Nuclear Waste Disposal (INE))

  • Christian Vollmer

    (Institute for Nuclear Waste Disposal (INE))

  • Aaron Beck

    (Institute for Nuclear Waste Disposal (INE))

  • Ruwini S. K. Ekanayake

    (Institute for Nuclear Waste Disposal (INE))

  • Jacob A. Branson

    (Chemical Sciences Division (CSD))

  • Thomas Neill

    (Institute for Nuclear Waste Disposal (INE)
    Oxford Road)

  • David Fellhauer

    (Institute for Nuclear Waste Disposal (INE))

  • Cedric Reitz

    (Institute for Nuclear Waste Disposal (INE))

  • Dieter Schild

    (Institute for Nuclear Waste Disposal (INE))

  • Dominique Brager

    (The George Washington University)

  • Christopher Cahill

    (The George Washington University)

  • Cory Windorff

    (MSC 3 C)

  • Thomas Sittel

    (Institute for Nuclear Waste Disposal (INE))

  • Harry Ramanantoanina

    (Institute for Nuclear Waste Disposal (INE))

  • Maurits W. Haverkort

    (Institute for Theoretical Physics (ITP))

  • Tonya Vitova

    (Institute for Nuclear Waste Disposal (INE))

Abstract

The actinides possess a complex electronic structure, making their chemical and physical properties among the least understood in the periodic table. Advanced spectroscopic tools, able to obtain deep insights into the electronic structure and binding properties of the actinides, are highly desirable. Here, we introduce two sensitive spectroscopic tools: one determines the number of localized 5f electrons on an actinide atom, and another assesses the covalent character of actinide-ligand bonding. Both tools are based on the multiplet structure present in actinide M4 edge core-to-core resonant inelastic X-ray scattering (CC-RIXS) maps. The spectral intensity of different many-body final-state multiplets directly depends on the local many-electron ground-state symmetry including the local 5 f spin configuration. By comparing U M4 edge CC-RIXS data for 21 U, Np, Pu and Am compounds, we demonstrate the ability to compare the number of localized 5 f electrons and bond covalency across the actinide series.

Suggested Citation

  • Bianca Schacherl & Michelangelo Tagliavini & Hanna Kaufmann-Heimeshoff & Jörg Göttlicher & Marinella Mazzanti & Karin Popa & Olaf Walter & Tim Pruessmann & Christian Vollmer & Aaron Beck & Ruwini S. K, 2025. "Resonant inelastic X-ray scattering tools to count 5 f electrons of actinides and probe bond covalency," Nature Communications, Nature, vol. 16(1), pages 1-21, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-54574-7
    DOI: 10.1038/s41467-024-54574-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54574-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54574-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. T. Vitova & I. Pidchenko & D. Fellhauer & P. S. Bagus & Y. Joly & T. Pruessmann & S. Bahl & E. Gonzalez-Robles & J. Rothe & M. Altmaier & M. A. Denecke & H. Geckeis, 2017. "The role of the 5f valence orbitals of early actinides in chemical bonding," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    2. Joseph M. Sperling & Evan J. Warzecha & Cristian Celis-Barros & Dumitru-Claudiu Sergentu & Xiaoyu Wang & Bonnie E. Klamm & Cory J. Windorff & Alyssa N. Gaiser & Frankie D. White & Drake A. Beery & Ale, 2020. "Compression of curium pyrrolidine-dithiocarbamate enhances covalency," Nature, Nature, vol. 583(7816), pages 396-399, July.
    3. Jacob J. Shephard & Victoria E. J. Berryman & Tatsumi Ochiai & Olaf Walter & Amy N. Price & Mark R. Warren & Polly L. Arnold & Nikolas Kaltsoyannis & Simon Parsons, 2022. "Covalent bond shortening and distortion induced by pressurization of thorium, uranium, and neptunium tetrakis aryloxides," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Josef T. Boronski & John A. Seed & David Hunger & Adam W. Woodward & Joris Slageren & Ashley J. Wooles & Louise S. Natrajan & Nikolas Kaltsoyannis & Stephen T. Liddle, 2021. "A crystalline tri-thorium cluster with σ-aromatic metal–metal bonding," Nature, Nature, vol. 598(7879), pages 72-75, October.
    5. Maryline G. Ferrier & Enrique R. Batista & John M. Berg & Eva R. Birnbaum & Justin N. Cross & Jonathan W. Engle & Henry S. La Pierre & Stosh A. Kozimor & Juan S. Lezama Pacheco & Benjamin W. Stein & S, 2016. "Spectroscopic and computational investigation of actinium coordination chemistry," Nature Communications, Nature, vol. 7(1), pages 1-8, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacob J. Shephard & Victoria E. J. Berryman & Tatsumi Ochiai & Olaf Walter & Amy N. Price & Mark R. Warren & Polly L. Arnold & Nikolas Kaltsoyannis & Simon Parsons, 2022. "Covalent bond shortening and distortion induced by pressurization of thorium, uranium, and neptunium tetrakis aryloxides," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Jennifer N. Wacker & Joshua J. Woods & Peter B. Rupert & Appie Peterson & Marc Allaire & Wayne W. Lukens & Alyssa N. Gaiser & Stefan G. Minasian & Roland K. Strong & Rebecca J. Abergel, 2024. "Actinium chelation and crystallization in a macromolecular scaffold," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Yingjing Yan & Laura Abella & Rong Sun & Yu-Hui Fang & Yannick Roselló & Yi Shen & Meihe Jin & Antonio Rodríguez-Fortea & Coen Graaf & Qingyu Meng & Yang-Rong Yao & Luis Echegoyen & Bing-Wu Wang & Son, 2023. "Actinide-lanthanide single electron metal-metal bond formed in mixed-valence di-metallofullerenes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Alyssa N. Gaiser & Cristian Celis-Barros & Frankie D. White & Maria J. Beltran-Leiva & Joseph M. Sperling & Sahan R. Salpage & Todd N. Poe & Daniela Gomez Martinez & Tian Jian & Nikki J. Wolford & Nat, 2021. "Creation of an unexpected plane of enhanced covalency in cerium(III) and berkelium(III) terpyridyl complexes," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    5. C. L. Silva & L. Amidani & M. Retegan & S. Weiss & E. F. Bazarkina & T. Graubner & F. Kraus & K. O. Kvashnina, 2024. "On the origin of low-valent uranium oxidation state," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Brian N. Long & María J. Beltrán-Leiva & Cristian Celis-Barros & Joseph M. Sperling & Todd N. Poe & Ryan E. Baumbach & Cory J. Windorff & Thomas E. Albrecht-Schönzart, 2022. "Cyclopentadienyl coordination induces unexpected ionic Am−N bonding in an americium bipyridyl complex," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    7. Brian N. Long & María J. Beltrán-Leíva & Joseph M. Sperling & Todd N. Poe & Cristian Celis-Barros & Thomas E. Albrecht-Schönzart, 2023. "Altering the spectroscopy, electronic structure, and bonding of organometallic curium(III) upon coordination of 4,4′−bipyridine," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-54574-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.