IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50924-7.html
   My bibliography  Save this article

On the origin of low-valent uranium oxidation state

Author

Listed:
  • C. L. Silva

    (CS40220
    Institute of Resource Ecology)

  • L. Amidani

    (CS40220
    Institute of Resource Ecology)

  • M. Retegan

    (CS40220)

  • S. Weiss

    (Institute of Resource Ecology)

  • E. F. Bazarkina

    (CS40220
    Institute of Resource Ecology)

  • T. Graubner

    (Philipps-Universität Marburg)

  • F. Kraus

    (Philipps-Universität Marburg)

  • K. O. Kvashnina

    (CS40220
    Institute of Resource Ecology)

Abstract

The significant interest in actinide bonding has recently focused on novel compounds with exotic oxidation states. However, the difficulty in obtaining relevant high-quality experimental data, particularly for low-valent actinide compounds, prevents a deeper understanding of 5f systems. Here we show X-ray absorption near-edge structure (XANES) measurements in the high-energy resolution fluorescence detection (HERFD) mode at the uranium M4 edge for the UIII and UIV halides, namely UX3 and UX4 (X = F, Cl, Br, I). The spectral shapes of these two series exhibit clear differences, which we explain using electronic structure calculations of the 3d-4f resonant inelastic X-ray scattering (RIXS) process. To understand the changes observed, we implemented crystal field models with ab initio derived parameters and investigated the effect of reducing different contributions to the electron-electron interactions involved in the RIXS process. Our analysis shows that the electron-electron interactions weaken as the ligand changes from I to F, indicative of a decrease in ionicity both along and between the UX3 and UX4 halide series.

Suggested Citation

  • C. L. Silva & L. Amidani & M. Retegan & S. Weiss & E. F. Bazarkina & T. Graubner & F. Kraus & K. O. Kvashnina, 2024. "On the origin of low-valent uranium oxidation state," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50924-7
    DOI: 10.1038/s41467-024-50924-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50924-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50924-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alyssa N. Gaiser & Cristian Celis-Barros & Frankie D. White & Maria J. Beltran-Leiva & Joseph M. Sperling & Sahan R. Salpage & Todd N. Poe & Daniela Gomez Martinez & Tian Jian & Nikki J. Wolford & Nat, 2021. "Creation of an unexpected plane of enhanced covalency in cerium(III) and berkelium(III) terpyridyl complexes," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Josef T. Boronski & John A. Seed & David Hunger & Adam W. Woodward & Joris Slageren & Ashley J. Wooles & Louise S. Natrajan & Nikolas Kaltsoyannis & Stephen T. Liddle, 2021. "A crystalline tri-thorium cluster with σ-aromatic metal–metal bonding," Nature, Nature, vol. 598(7879), pages 72-75, October.
    3. Korey P. Carter & Katherine M. Shield & Kurt F. Smith & Zachary R. Jones & Jennifer N. Wacker & Leticia Arnedo-Sanchez & Tracy M. Mattox & Liane M. Moreau & Karah E. Knope & Stosh A. Kozimor & Corwin , 2021. "Structural and spectroscopic characterization of an einsteinium complex," Nature, Nature, vol. 590(7844), pages 85-88, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jennifer N. Wacker & Joshua J. Woods & Peter B. Rupert & Appie Peterson & Marc Allaire & Wayne W. Lukens & Alyssa N. Gaiser & Stefan G. Minasian & Roland K. Strong & Rebecca J. Abergel, 2024. "Actinium chelation and crystallization in a macromolecular scaffold," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Yingjing Yan & Laura Abella & Rong Sun & Yu-Hui Fang & Yannick Roselló & Yi Shen & Meihe Jin & Antonio Rodríguez-Fortea & Coen Graaf & Qingyu Meng & Yang-Rong Yao & Luis Echegoyen & Bing-Wu Wang & Son, 2023. "Actinide-lanthanide single electron metal-metal bond formed in mixed-valence di-metallofullerenes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50924-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.