IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54582-7.html
   My bibliography  Save this article

Drivers of global tourism carbon emissions

Author

Listed:
  • Ya-Yen Sun

    (The University of Queensland)

  • Futu Faturay

    (The University of Queensland
    Ministry of Finance Indonesia)

  • Manfred Lenzen

    (The University of Sydney
    Lehmkuhlenbusch 4)

  • Stefan Gössling

    (Western Norway Research Institute
    Linnaeus University)

  • James Higham

    (170 Kessels Road
    University of Otago)

Abstract

Tourism has a critical role to play in global carbon emissions pathway. This study estimates the global tourism carbon footprint and identifies the key drivers using environmentally extended input-output modelling. The results indicate that global tourism emissions grew 3.5% p.a. between 2009-2019, double that of the worldwide economy, reaching 5.2 Gt CO2-e or 8.8% of total global GHG emissions in 2019. The primary drivers of emissions growth are slow technology efficiency gains (0.3% p.a.) combined with sustained high growth in tourism demand (3.8% p.a. in constant 2009 prices). Tourism emissions are associated with alarming distributional inequalities. Under both destination- and resident-based accounting, the twenty highest-emitting countries contribute three-quarters of the global footprint. The disparity in per-capita tourism emissions between high- and low-income nations now exceeds two orders of magnitude. National tourism decarbonisation strategies will require demand volume thresholds to be defined to align global tourism with the Paris Agreement.

Suggested Citation

  • Ya-Yen Sun & Futu Faturay & Manfred Lenzen & Stefan Gössling & James Higham, 2024. "Drivers of global tourism carbon emissions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54582-7
    DOI: 10.1038/s41467-024-54582-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54582-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54582-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jianping Zha & Ting Tan & Wenwen Yuan & Xiaojie Yang & Ying Zhu, 2020. "Decomposition analysis of tourism CO2 emissions for sustainable development: A case study of China," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(1), pages 169-186, January.
    2. Pardey, Philip G & Roseboom, Johannes & Craig, Barbara J, 1992. "A Yardstick for International Comparisons: An Application to National Agricultural Research Expenditures," Economic Development and Cultural Change, University of Chicago Press, vol. 40(2), pages 333-349, January.
    3. Ya-Yen Sun & Kam-Fai Wong, 2010. "An Important Factor In Job Estimation: A Nonlinear Jobs-To-Sales Ratio With Respect To Capacity Utilization," Economic Systems Research, Taylor & Francis Journals, vol. 22(4), pages 427-446.
    4. Manfred Lenzen & Ya-Yen Sun & Futu Faturay & Yuan-Peng Ting & Arne Geschke & Arunima Malik, 2018. "The carbon footprint of global tourism," Nature Climate Change, Nature, vol. 8(6), pages 522-528, June.
    5. Sun, J. W., 1998. "Changes in energy consumption and energy intensity: A complete decomposition model," Energy Economics, Elsevier, vol. 20(1), pages 85-100, February.
    6. Filippo Simini & Gianni Barlacchi & Massimilano Luca & Luca Pappalardo, 2021. "A Deep Gravity model for mobility flows generation," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    7. Hoekstra, Rutger & van den Bergh, Jeroen C. J. M., 2003. "Comparing structural decomposition analysis and index," Energy Economics, Elsevier, vol. 25(1), pages 39-64, January.
    8. Lorenz T. Keyßer & Manfred Lenzen, 2021. "1.5 °C degrowth scenarios suggest the need for new mitigation pathways," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    9. Manfred Lenzen & Arne Geschke & Muhammad Daaniyall Abd Rahman & Yanyan Xiao & Jacob Fry & Rachel Reyes & Erik Dietzenbacher & Satoshi Inomata & Keiichiro Kanemoto & Bart Los & Daniel Moran & Hagen Sch, 2017. "The Global MRIO Lab – charting the world economy," Economic Systems Research, Taylor & Francis Journals, vol. 29(2), pages 158-186, April.
    10. Scott, Daniel & Hall, C. Michael & Gössling, Stefan, 2019. "Global tourism vulnerability to climate change," Annals of Tourism Research, Elsevier, vol. 77(C), pages 49-61.
    11. Lan, Jun & Malik, Arunima & Lenzen, Manfred & McBain, Darian & Kanemoto, Keiichiro, 2016. "A structural decomposition analysis of global energy footprints," Applied Energy, Elsevier, vol. 163(C), pages 436-451.
    12. Hannah Sharp & Josefine Grundius & Jukka Heinonen, 2016. "Carbon Footprint of Inbound Tourism to Iceland: A Consumption-Based Life-Cycle Assessment including Direct and Indirect Emissions," Sustainability, MDPI, vol. 8(11), pages 1-23, November.
    13. Emla Fitzsimons & Vincent Hogan & J. Peter Neary, 1999. "Explaining the Volume of North-South Trade in Ireland - A Gravity Model Approach," The Economic and Social Review, Economic and Social Studies, vol. 30(4), pages 381-401.
    14. Manfred Lenzen & Ya-Yen Sun & Futu Faturay & Yuan-Peng Ting & Arne Geschke & Arunima Malik, 2018. "Author Correction: The carbon footprint of global tourism," Nature Climate Change, Nature, vol. 8(6), pages 544-544, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lan, Jun & Malik, Arunima & Lenzen, Manfred & McBain, Darian & Kanemoto, Keiichiro, 2016. "A structural decomposition analysis of global energy footprints," Applied Energy, Elsevier, vol. 163(C), pages 436-451.
    2. Pipatpong Fakfare & Walanchalee Wattanacharoensil, 2023. "Low‐carbon tourism for island destinations: A crucial alternative for sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(1), pages 180-197, February.
    3. Duan, Yuwan & Yan, Bingqian, 2019. "Economic gains and environmental losses from international trade: A decomposition of pollution intensity in China's value-added trade," Energy Economics, Elsevier, vol. 83(C), pages 540-554.
    4. Jing Zhang & Bing Xia, 2024. "Carbon Emissions and Its Efficiency of Tourist Hotels in China from the Supply Chain Based on the Input–Output Method and Super-SBM Model," Sustainability, MDPI, vol. 16(21), pages 1-27, October.
    5. Scott, Daniel & Gössling, Stefan, 2022. "A review of research into tourism and climate change - Launching the annals of tourism research curated collection on tourism and climate change," Annals of Tourism Research, Elsevier, vol. 95(C).
    6. Qunli Tang & Qianqian Wang & Tiancai Zhou, 2022. "Driving Forces of Tourism Carbon Decoupling: A Case Study of the Yangtze River Economic Belt, China," Sustainability, MDPI, vol. 14(14), pages 1-14, July.
    7. Sun, Ya-Yen & Gossling, Stefan & Zhou, Wanru, 2022. "Does tourism increase or decrease carbon emissions? A systematic review," Annals of Tourism Research, Elsevier, vol. 97(C).
    8. Natalia Porto & Matías Ciaschi, 2021. "Reformulating the tourism-extended environmental Kuznets curve: A quantile regression analysis under environmental legal conditions," Tourism Economics, , vol. 27(5), pages 991-1014, August.
    9. Nicholas Apergis & Konstantinos Gavriilidis & Rangan Gupta, 2023. "Does climate policy uncertainty affect tourism demand? Evidence from time-varying causality tests," Tourism Economics, , vol. 29(6), pages 1484-1498, September.
    10. Md. Hasanur Rahman & Liton Chandra Voumik & Md. Jamsedul Islam & Md. Abdul Halim & Miguel Angel Esquivias, 2022. "Economic Growth, Energy Mix, and Tourism-Induced EKC Hypothesis: Evidence from Top Ten Tourist Destinations," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
    11. Duoxun Ba & Jing Zhang & Suocheng Dong & Bing Xia & Lin Mu, 2022. "Spatial-Temporal Characteristics and Driving Factors of the Eco-Efficiency of Tourist Hotels in China," IJERPH, MDPI, vol. 19(18), pages 1-24, September.
    12. Bahram Zikirya & Jieyu Wang & Chunshan Zhou, 2021. "The Relationship between CO 2 Emissions, Air Pollution, and Tourism Flows in China: A Panel Data Analysis of Chinese Provinces," Sustainability, MDPI, vol. 13(20), pages 1-17, October.
    13. Lingling Chen & Lin Yi & Rongrong Cai & Hui Yang, 2022. "Spatiotemporal Characteristics of the Correlation among Tourism, CO 2 Emissions, and Economic Growth in China," Sustainability, MDPI, vol. 14(14), pages 1-31, July.
    14. Larbi Safaa & Ahmet Atalay & Daiva Makutėnienė & Dalia Perkumienė & Imane El Bouazzaoui, 2023. "Assessment of Carbon Footprint Negative Effects for Nature in International Traveling," Sustainability, MDPI, vol. 15(16), pages 1-14, August.
    15. Sudeshna Ghosh, 2022. "Effects of tourism on carbon dioxide emissions, a panel causality analysis with new data sets," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3884-3906, March.
    16. Nagashima, Fumiya, 2018. "The sign reversal problem in structural decomposition analysis," Energy Economics, Elsevier, vol. 72(C), pages 307-312.
    17. Sofi, Arfat Ahmad & Bhat, Mohammad Younus & Ahmad, Laraib & Aara, Ruhi Refath & Aswani, RS, 2022. "Renewable energy and transitioning towards sustainable tourism: Inferences from kernel density and nonparametric approach," Renewable Energy, Elsevier, vol. 193(C), pages 963-975.
    18. Run Liu & Ziyue Qiu, 2022. "Urban Sustainable Development Empowered by Cultural and Tourism Industries: Using Zhenjiang as an Example," Sustainability, MDPI, vol. 14(19), pages 1-15, October.
    19. Talwar, Shalini & Kaur, Puneet & Escobar, Octavio & Lan, Sai, 2022. "Virtual reality tourism to satisfy wanderlust without wandering: An unconventional innovation to promote sustainability," Journal of Business Research, Elsevier, vol. 152(C), pages 128-143.
    20. Zhao, Xiaoli & Li, Na & Ma, Chunbo, 2012. "Residential energy consumption in urban China: A decomposition analysis," Energy Policy, Elsevier, vol. 41(C), pages 644-653.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54582-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.