IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54464-y.html
   My bibliography  Save this article

Boron-induced transformation of ultrathin Au films into two-dimensional metallic nanostructures

Author

Listed:
  • Alexei Preobrajenski

    (Lund University)

  • Nikolay Vinogradov

    (Lund University)

  • David A. Duncan

    (Diamond Light Source)

  • Tien-Lin Lee

    (Diamond Light Source)

  • Mikhail Tsitsvero

    (Hokkaido University)

  • Tetsuya Taketsugu

    (Hokkaido University
    Hokkaido University)

  • Andrey Lyalin

    (Hokkaido University
    National Institute for Materials Science)

Abstract

The synthesis of large, freestanding, single-atom-thick two-dimensional (2D) metallic materials remains challenging due to the isotropic nature of metallic bonding. Here, we present a bottom-up approach for fabricating macroscopically large, nearly freestanding 2D gold (Au) monolayers, consisting of nanostructured patches. By forming Au monolayers on an Ir(111) substrate and embedding boron (B) atoms at the Au/Ir interface, we achieve suspended monoatomic Au sheets with hexagonal structures and triangular nanoscale patterns. Alternative patterns of periodic nanodots are observed in Au bilayers on the B/Ir(111) substrate. Using scanning tunneling microscopy, X-ray spectroscopies, and theoretical calculations, we reveal the role of buried B species in forming the nanostructured Au layers. Changes in the Au monolayer’s band structure upon substrate decoupling indicate a transition from 3D to 2D metal bonding. The resulting Au films exhibit remarkable thermal stability, making them practical for studying the catalytic activity of 2D gold.

Suggested Citation

  • Alexei Preobrajenski & Nikolay Vinogradov & David A. Duncan & Tien-Lin Lee & Mikhail Tsitsvero & Tetsuya Taketsugu & Andrey Lyalin, 2024. "Boron-induced transformation of ultrathin Au films into two-dimensional metallic nanostructures," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54464-y
    DOI: 10.1038/s41467-024-54464-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54464-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54464-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stiven Forti & Stefan Link & Alexander Stöhr & Yuran Niu & Alexei A. Zakharov & Camilla Coletti & Ulrich Starke, 2020. "Semiconductor to metal transition in two-dimensional gold and its van der Waals heterostack with graphene," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cedric Schmitt & Jonas Erhardt & Philipp Eck & Matthias Schmitt & Kyungchan Lee & Philipp Keßler & Tim Wagner & Merit Spring & Bing Liu & Stefan Enzner & Martin Kamp & Vedran Jovic & Chris Jozwiak & A, 2024. "Achieving environmental stability in an atomically thin quantum spin Hall insulator via graphene intercalation," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Hongguang Wang & Jiawei Zhang & Chen Shen & Chao Yang & Kathrin Küster & Julia Deuschle & Ulrich Starke & Hongbin Zhang & Masahiko Isobe & Dennis Huang & Peter A. van Aken & Hidenori Takagi, 2024. "Direct visualization of stacking-selective self-intercalation in epitaxial Nb1+xSe2 films," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54464-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.