IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54416-6.html
   My bibliography  Save this article

Sluggish thermochemical basal mantle structures support their long-lived stability

Author

Listed:
  • Zhidong Shi

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Ross N. Mitchell

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yang Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Bo Wan

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Ling Chen

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Peng Peng

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Liang Zhao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Lijun Liu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Rixiang Zhu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

Large low shear-wave velocity provinces (LLSVPs) in the lowermost mantle are the largest geological structures on Earth, but their origin and age remain highly enigmatic. Geological constraints suggest the stability of the LLSVPs since at least 200 million years ago. Here, we conduct numerical modeling of mantle convection with plate-like behavior that yields a Pacific-like girdle of mantle downwelling which successfully forms two antipodal basal mantle structures similar to the LLSVPs. Our parameterized results optimized to reflect LLSVP features exhibit velocities for the basal mantle structures that are ~ 4 times slower than the ambient mantle if they are thermochemical, while the velocity is similar to the ambient mantle if purely thermal. The sluggish motion of the thermochemical basal mantle structures in our models permits the notion that geological data from hundreds of millions of years ago are related to modern LLSVPs as they are essentially stationary over such time scales.

Suggested Citation

  • Zhidong Shi & Ross N. Mitchell & Yang Li & Bo Wan & Ling Chen & Peng Peng & Liang Zhao & Lijun Liu & Rixiang Zhu, 2024. "Sluggish thermochemical basal mantle structures support their long-lived stability," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54416-6
    DOI: 10.1038/s41467-024-54416-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54416-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54416-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. Labrosse & J. W. Hernlund & N. Coltice, 2007. "A crystallizing dense magma ocean at the base of the Earth’s mantle," Nature, Nature, vol. 450(7171), pages 866-869, December.
    2. Nicolas Flament & Ömer F. Bodur & Simon E. Williams & Andrew S. Merdith, 2022. "Assembly of the basal mantle structure beneath Africa," Nature, Nature, vol. 603(7903), pages 846-851, March.
    3. Trond H. Torsvik & Kevin Burke & Bernhard Steinberger & Susan J. Webb & Lewis D. Ashwal, 2010. "Diamonds sampled by plumes from the core–mantle boundary," Nature, Nature, vol. 466(7304), pages 352-355, July.
    4. Qian Yuan & Mingming Li & Steven J. Desch & Byeongkwan Ko & Hongping Deng & Edward J. Garnero & Travis S. J. Gabriel & Jacob A. Kegerreis & Yoshinori Miyazaki & Vincent Eke & Paul D. Asimow, 2023. "Moon-forming impactor as a source of Earth’s basal mantle anomalies," Nature, Nature, vol. 623(7985), pages 95-99, November.
    5. Clinton P. Conrad & Bernhard Steinberger & Trond H. Torsvik, 2013. "Stability of active mantle upwelling revealed by net characteristics of plate tectonics," Nature, Nature, vol. 498(7455), pages 479-482, June.
    6. Nicolas Flament & Ömer F. Bodur & Simon E. Williams & Andrew S. Merdith, 2022. "Author Correction: Assembly of the basal mantle structure beneath Africa," Nature, Nature, vol. 606(7914), pages 4-4, June.
    7. Ross N. Mitchell & Taylor M. Kilian & David A. D. Evans, 2012. "Supercontinent cycles and the calculation of absolute palaeolongitude in deep time," Nature, Nature, vol. 482(7384), pages 208-211, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li Zhang & Yongjin Chen & Ziqiang Yang & Lu Liu & Yanping Yang & Philip Dalladay-Simpson & Junyue Wang & Ho-kwang Mao, 2024. "Pressure stabilizes ferrous iron in bridgmanite under hydrous deep lower mantle conditions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Stuart Russell & Jessica C. E. Irving & Robert Myhill & Sanne Cottaar, 2024. "The emerging picture of a complex core-mantle boundary," Nature Communications, Nature, vol. 15(1), pages 1-3, December.
    3. Yifei Hou & Pan Zhao & Huafeng Qin & Ross N. Mitchell & Qiuli Li & Wenxing Hao & Min Zhang & Peter D. Ward & Jie Yuan & Chenglong Deng & Rixiang Zhu, 2024. "Completing the loop of the Late Jurassic–Early Cretaceous true polar wander event," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Vasilije V. Dobrosavljevic & Dongzhou Zhang & Wolfgang Sturhahn & Stella Chariton & Vitali B. Prakapenka & Jiyong Zhao & Thomas S. Toellner & Olivia S. Pardo & Jennifer M. Jackson, 2023. "Melting and defect transitions in FeO up to pressures of Earth’s core-mantle boundary," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Guido M. Gianni & César R. Navarrete, 2022. "Catastrophic slab loss in southwestern Pangea preserved in the mantle and igneous record," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Alik Ismail-Zadeh & Anne Davaille & Jean Besse & Yuri Volozh, 2024. "East European sedimentary basins long heated by a fading mantle upwelling," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Jing-Yao Xu & Andrea Giuliani & Qiu-Li Li & Kai Lu & Joan Carles Melgarejo & William L. Griffin, 2021. "Light oxygen isotopes in mantle-derived magmas reflect assimilation of sub-continental lithospheric mantle material," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    8. Suraj K. Bajgain & Aaron Wolfgang Ashley & Mainak Mookherjee & Dipta B. Ghosh & Bijaya B. Karki, 2022. "Insights into magma ocean dynamics from the transport properties of basaltic melt," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Laura Cobden & Jingyi Zhuang & Wenjie Lei & Renata Wentzcovitch & Jeannot Trampert & Jeroen Tromp, 2024. "Full-waveform tomography reveals iron spin crossover in Earth’s lower mantle," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Katsutoshi Kawano & Masayuki Nishi & Hideharu Kuwahara & Sho Kakizawa & Toru Inoue & Tadashi Kondo, 2024. "Extensive iron–water exchange at Earth’s core–mantle boundary can explain seismic anomalies," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Stephan Homrighausen & Kaj Hoernle & Folkmar Hauff & Patrick A. Hoyer & Karsten M. Haase & Wolfram H. Geissler & Jörg Geldmacher, 2023. "Evidence for compositionally distinct upper mantle plumelets since the early history of the Tristan-Gough hotspot," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Zhi Li & Kuangdai Leng & Jennifer Jenkins & Sanne Cottaar, 2022. "Kilometer-scale structure on the core–mantle boundary near Hawaii," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Jiewen Li & Daoyuan Sun & Dan J. Bower, 2022. "Slab control on the mega-sized North Pacific ultra-low velocity zone," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54416-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.