IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54321-y.html
   My bibliography  Save this article

Synthesis and redox catalysis of Carbodiphosphorane ligated stannylene

Author

Listed:
  • Zhuchunguang Liu

    (Sichuan University)

  • Zhijun Wang

    (Sichuan University)

  • Huan Mu

    (Sichuan University)

  • Yihan Zhou

    (Sichuan University)

  • Jiliang Zhou

    (Sichuan University)

  • Zhaowen Dong

    (Sichuan University)

Abstract

Heavier group 14 carbene analogues, exhibiting transition-metal-like behavior, display remarkable capability for small molecule activation and coordination chemistry. However, their application in redox catalysis remains elusive. In this paper, we report the synthesis and isolation of a stannylene with carbodiphosphorane ligand. The nucleophilic reactivity at the divalent tin center is elucidated by computational and reactivity studies. Moreover, this stannylene exhibits catalytic activity in the hydrodefluorination reaction of fluoroarenes. Mechanistic investigations into the elementary steps confirm a SnII/SnIV redox cycle involving C–F oxidative addition, F/H ligand metathesis, and C–H reductive elimination. This low-valent SnII catalytic system resembles the classical transition metal catalysis. Notably, this represents metallomimetic redox catalysis utilizing carbene analogue with heavier group 14 element as a catalyst.

Suggested Citation

  • Zhuchunguang Liu & Zhijun Wang & Huan Mu & Yihan Zhou & Jiliang Zhou & Zhaowen Dong, 2024. "Synthesis and redox catalysis of Carbodiphosphorane ligated stannylene," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54321-y
    DOI: 10.1038/s41467-024-54321-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54321-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54321-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Philip P. Power, 2010. "Main-group elements as transition metals," Nature, Nature, vol. 463(7278), pages 171-177, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sonia Bajo & Enrique Soto & Marta Fernández-Buenestado & Joaquín López-Serrano & Jesús Campos, 2024. "A low-coordinate platinum(0)-germylene for E–H bond activation and catalytic hydrodehalogenation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Fenghui Ye & Shishi Zhang & Qingqing Cheng & Yongde Long & Dong Liu & Rajib Paul & Yunming Fang & Yaqiong Su & Liangti Qu & Liming Dai & Chuangang Hu, 2023. "The role of oxygen-vacancy in bifunctional indium oxyhydroxide catalysts for electrochemical coupling of biomass valorization with CO2 conversion," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Liyan Cai & Bing Xu & Juanjuan Cheng & Fei Cong & Sebastian Riedel & Xuefeng Wang, 2024. "N2 cleavage by silylene and formation of H2Si(μ-N)2SiH2," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Shaozhi Du & Fanshu Cao & Xi Chen & Hua Rong & Haibin Song & Zhenbo Mo, 2023. "A silylene-stabilized ditin(0) complex and its conversion to methylditin cation and distannavinylidene," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Runbo Pei & Wenju Chang & Liancheng He & Tao Wang & Yue Zhao & Yong Liang & Xinping Wang, 2024. "Main-group compounds selectively activate natural gas alkanes under room temperature and atmospheric pressure," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    6. Marcel Härterich & Alexander Matler & Rian D. Dewhurst & Andreas Sachs & Kai Oppel & Andreas Stoy & Holger Braunschweig, 2023. "A step-for-step main-group replica of the Fischer carbene synthesis at a borylene carbonyl," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54321-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.