IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54092-6.html
   My bibliography  Save this article

Earth’s longest preserved linear volcanic ridge generated by a moving Kerguelen hotspot

Author

Listed:
  • Qiang Jiang

    (China University of Petroleum
    China University of Petroleum
    Curtin University)

  • Hugo K. H. Olierook

    (Curtin University)

  • Fred Jourdan

    (Curtin University)

  • Diana Carmona Hoyos

    (Curtin University)

  • Renaud E. Merle

    (Uppsala University)

  • Evelyn M. Mervine

    (The University of Queensland)

  • William W. Sager

    (University of Houston)

Abstract

Recent seismic tomography unveiled complex mantle plume structures diverging from the originally proposed single, narrow, and vertically-oriented plume conduits, which necessitates new perspectives on the mechanism of hotspot motion. While several recent endeavours have focused on Pacific hotspots’ motion, knowledge of others remains limited. Here we constrain the motions of the Kerguelen hotspot within the Indian Ocean by obtaining robust 40Ar/39Ar ages for the Ninetyeast Ridge, Earth’s longest linear volcanic ridge. These data indicate varying volcanic progression rates along the ridge, contrasting to a constant rate as previously documented. Combined with constraints on the Indian Plate motion and seafloor spreading, we reveal four periods of motions of the hotspot caused by its interactions with the Indian–Antarctic spreading ridge. This suggests that mantle plume lateral flows are susceptible to changes in shallow mantle convection due to the existence of horizontal ponding zones and vertical conduits, especially in the shallow asthenosphere.

Suggested Citation

  • Qiang Jiang & Hugo K. H. Olierook & Fred Jourdan & Diana Carmona Hoyos & Renaud E. Merle & Evelyn M. Mervine & William W. Sager, 2024. "Earth’s longest preserved linear volcanic ridge generated by a moving Kerguelen hotspot," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54092-6
    DOI: 10.1038/s41467-024-54092-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54092-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54092-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Richard K. Bono & John A. Tarduno & Hans-Peter Bunge, 2019. "Hotspot motion caused the Hawaiian-Emperor Bend and LLSVPs are not fixed," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    2. Bernhard Steinberger & Rupert Sutherland & Richard J. O'Connell, 2004. "Prediction of Emperor-Hawaii seamount locations from a revised model of global plate motion and mantle flow," Nature, Nature, vol. 430(6996), pages 167-173, July.
    3. Steven C. Cande & Dave R. Stegman, 2011. "Indian and African plate motions driven by the push force of the Réunion plume head," Nature, Nature, vol. 475(7354), pages 47-52, July.
    4. Rakib Hassan & R. Dietmar Müller & Michael Gurnis & Simon E. Williams & Nicolas Flament, 2016. "A rapid burst in hotspot motion through the interaction of tectonics and deep mantle flow," Nature, Nature, vol. 533(7602), pages 239-242, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shijie Xie & Zebin Cao & Lijun Liu & Dinghui Yang & Mengxue Liu & Yanchong Li & Rui Qi, 2024. "The role of plume-lithosphere interaction in Hawaii-Emperor chain formation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Chouhan, Avinash Kumar & Kumar, Rakesh & Mishra, Abhishek Kumar, 2024. "Assessment of the geothermal potential zone of India utilizing GIS-based multi-criteria decision analysis technique," Renewable Energy, Elsevier, vol. 227(C).
    3. Ben Mather & Maria Seton & Simon Williams & Joanne Whittaker & Rebecca Carey & Maëlis Arnould & Nicolas Coltice & Robert Duncan, 2024. "Spreading ridge migration enabled by plume-ridge de-anchoring," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Jiewen Li & Daoyuan Sun & Dan J. Bower, 2022. "Slab control on the mega-sized North Pacific ultra-low velocity zone," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54092-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.