IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53960-5.html
   My bibliography  Save this article

Oriented triplex DNA as a synthetic receptor for transmembrane signal transduction

Author

Listed:
  • Hui Chen

    (Hunan University)

  • Shaohong Zhou

    (Hunan University)

  • Kleins Ngocho

    (Hunan University)

  • Jing Zheng

    (Hunan University)

  • Xiaoxiao He

    (Hunan University)

  • Jin Huang

    (Hunan University)

  • Kemin Wang

    (Hunan University)

  • Hui Shi

    (Hunan University)

  • Jianbo Liu

    (Hunan University)

Abstract

Signal transduction across biological membranes enables cells to detect and respond to diverse chemical or physical signals, and replicating these complex biological processes through synthetic methods is of significant interest in synthetic biology. Here we present an artificial signal transduction system using oriented cholesterol-tagged triplex DNA (TD) as synthetic receptors to transmit and amplify signals across lipid bilayer membranes through H+-mediated TD conformational transitions from duplex to triplex. An auxiliary sequence, complementary to the third strand of the TD, ensures a controlled and preferred outward orientation of cholesterol-tagged TD on membranes. Upon external H+ stimuli, the conformational change triggers the translocation of the third strand from the outer to the inner membrane leaflet, resulting in effective transmembrane signal transduction. This mechanism enables fluorescence resonance energy transfer (FRET), selective photocleavage, catalytic signal amplification, and logic gate modulation within vesicles. Our findings demonstrate that these TD-based receptors mimic the functional dynamics of natural G protein-coupled receptors (GPCRs), providing a foundation for advanced applications in biosensing, cell signaling modulation, and targeted drug delivery systems.

Suggested Citation

  • Hui Chen & Shaohong Zhou & Kleins Ngocho & Jing Zheng & Xiaoxiao He & Jin Huang & Kemin Wang & Hui Shi & Jianbo Liu, 2024. "Oriented triplex DNA as a synthetic receptor for transmembrane signal transduction," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53960-5
    DOI: 10.1038/s41467-024-53960-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53960-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53960-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Manish Debnath & Sandipan Chakraborty & Y. Pavan Kumar & Ritapa Chaudhuri & Biman Jana & Jyotirmayee Dash, 2020. "Ionophore constructed from non-covalent assembly of a G-quadruplex and liponucleoside transports K+-ion across biological membranes," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    2. Oliver Birkholz & Jonathan R. Burns & Christian P. Richter & Olympia E. Psathaki & Stefan Howorka & Jacob Piehler, 2018. "Multi-functional DNA nanostructures that puncture and remodel lipid membranes into hybrid materials," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raj Paul & Debasish Dutta & Titas Kumar Mukhopadhyay & Diana Müller & Binayak Lala & Ayan Datta & Harald Schwalbe & Jyotirmayee Dash, 2024. "A non-B DNA binding peptidomimetic channel alters cellular functions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Jianxin Yang & Tianle Pan & Zhenming Xie & Wu Yuan & Ho-Pui Ho, 2024. "In-tube micro-pyramidal silicon nanopore for inertial-kinetic sensing of single molecules," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Jie Shen & Yongting Gu & Lingjie Ke & Qiuping Zhang & Yin Cao & Yuchao Lin & Zhen Wu & Caisheng Wu & Yuguang Mu & Yun-Long Wu & Changliang Ren & Huaqiang Zeng, 2022. "Cholesterol-stabilized membrane-active nanopores with anticancer activities," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Katya Ahmad & Abid Javed & Conor Lanphere & Peter V. Coveney & Elena V. Orlova & Stefan Howorka, 2023. "Structure and dynamics of an archetypal DNA nanoarchitecture revealed via cryo-EM and molecular dynamics simulations," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53960-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.