IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53957-0.html
   My bibliography  Save this article

Self-healing electronic skin with high fracture strength and toughness

Author

Listed:
  • Jaehoon Jung

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Sunwoo Lee

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Hyunjun Kim

    (Seoul National University)

  • Wonbeom Lee

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Jooyeun Chong

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Insang You

    (Waterloo)

  • Jiheong Kang

    (Seoul National University)

Abstract

Human skin is essential for perception, encompassing haptic, thermal, proprioceptive, and pain-sensing functions through ion movement. Additionally, it is mechanically resilient and self-healing for protection. Inspired by these unique properties, researchers have attempted to develop stretchable, self-healing sensors based on ion dynamics. However, most self-healing sensors reported to date suffer from low fracture strength and toughness. In this work, we present an ion-based self-healing electronic skin with exceptionally high fracture strength and toughness. We enhanced self-healing polymers and ionic conductors by introducing two types of orthogonal dynamic crosslinking bonds: dynamic aromatic disulfide bonds and 2-ureido-4-pyrimidone moieties. These dynamic bonds provide autonomous self-healing and high mechanical toughness even in the presence of ionic liquids. As a result, our self-healing polymer and self-healing ionic conductor exhibit remarkable stretchability (700%, 850%), fracture strength (34 MPa, 30 MPa), and toughness (78.5 MJ/m3, 87.3 MJ/m3), the highest values reported among self-healing ionic conductors to date. Using our materials, we developed various fully self-healing sensors and a soft gripper capable of autonomously recovering from mechanical damage. By integrating these components, we created a comprehensive self-healing electronic skin suitable for soft robotics applications.

Suggested Citation

  • Jaehoon Jung & Sunwoo Lee & Hyunjun Kim & Wonbeom Lee & Jooyeun Chong & Insang You & Jiheong Kang, 2024. "Self-healing electronic skin with high fracture strength and toughness," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53957-0
    DOI: 10.1038/s41467-024-53957-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53957-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53957-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David G. Mackanic & Xuzhou Yan & Qiuhong Zhang & Naoji Matsuhisa & Zhiao Yu & Yuanwen Jiang & Tuheen Manika & Jeffrey Lopez & Hongping Yan & Kai Liu & Xiaodong Chen & Yi Cui & Zhenan Bao, 2019. "Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    2. Youngho Eom & Seon-Mi Kim & Minkyung Lee & Hyeonyeol Jeon & Jaeduk Park & Eun Seong Lee & Sung Yeon Hwang & Jeyoung Park & Dongyeop X. Oh, 2021. "Mechano-responsive hydrogen-bonding array of thermoplastic polyurethane elastomer captures both strength and self-healing," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo-Rui Zhu & Qin Zhang & Qing-Song Liu & Qi-Yao Bai & Yi-Zhou Quan & You Gao & Gang Wu & Yu-Zhong Wang, 2023. "Non-flammable solvent-free liquid polymer electrolyte for lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Jing Chen & Yiyang Gao & Lei Shi & Wei Yu & Zongjie Sun & Yifan Zhou & Shuang Liu & Heng Mao & Dongyang Zhang & Tongqing Lu & Quan Chen & Demei Yu & Shujiang Ding, 2022. "Phase-locked constructing dynamic supramolecular ionic conductive elastomers with superior toughness, autonomous self-healing and recyclability," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Yun Su & Xiaohui Rong & Ang Gao & Yuan Liu & Jianwei Li & Minglei Mao & Xingguo Qi & Guoliang Chai & Qinghua Zhang & Liumin Suo & Lin Gu & Hong Li & Xuejie Huang & Liquan Chen & Binyuan Liu & Yong-She, 2022. "Rational design of a topological polymeric solid electrolyte for high-performance all-solid-state alkali metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Zhihao Li & Chunmei Jia & Zhi Wan & Jiayi Xue & Junchao Cao & Meng Zhang & Can Li & Jianghua Shen & Chao Zhang & Zhen Li, 2023. "Hyperbranched polymer functionalized flexible perovskite solar cells with mechanical robustness and reduced lead leakage," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. FuYao Sun & LongFei Liu & Tong Liu & XueBin Wang & Qi Qi & ZuSheng Hang & Kai Chen & JianHua Xu & JiaJun Fu, 2023. "Vascular smooth muscle-inspired architecture enables soft yet tough self-healing materials for durable capacitive strain-sensor," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Lingbo Yao & Jiahe Liu & Feifan Zhang & Bo Wen & Xiaowei Chi & Yu Liu, 2024. "Reconstruction of zinc-metal battery solvation structures operating from −50 ~ +100 °C," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Fei Pei & Lin Wu & Yi Zhang & Yaqi Liao & Qi Kang & Yan Han & Huangwei Zhang & Yue Shen & Henghui Xu & Zhen Li & Yunhui Huang, 2024. "Interfacial self-healing polymer electrolytes for long-cycle solid-state lithium-sulfur batteries," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Yong Min Kim & Jin Han Kwon & Seonho Kim & U Hyeok Choi & Hong Chul Moon, 2022. "Ion-cluster-mediated ultrafast self-healable ionoconductors for reconfigurable electronics," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53957-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.