IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53884-0.html
   My bibliography  Save this article

Large unidirectional spin Hall magnetoresistance in FeNi/Pt/Bi2Se3 trilayers by Pt interfacial engineering

Author

Listed:
  • Qi Zhang

    (Lanzhou University)

  • Kun Tao

    (Lanzhou University)

  • Chenglong Jia

    (Lanzhou University)

  • Guofu Xu

    (Lanzhou University)

  • Guozhi Chai

    (Lanzhou University)

  • Yalu Zuo

    (Lanzhou University)

  • Baoshan Cui

    (Lanzhou University)

  • Dezheng Yang

    (Lanzhou University)

  • Desheng Xue

    (Lanzhou University)

  • Li Xi

    (Lanzhou University)

Abstract

Unidirectional spin Hall magnetoresistance (USMR) has emerged as a promising candidate for magnetoresistive random-access memory (MRAM) technology. However, the realization of high signal-to-noise output signal in USMR devices has remained a challenge, primarily due to the limited USMR effect at room temperature. In this study, we report a large USMR effect in FeNi/Pt/Bi₂Se₃ trilayers through interfacial engineering with Pt to optimize the spin current transmission efficiency and electron-magnon scattering. Our devices exhibit a USMR value that is an order of magnitude higher than previously reported systems, reaching 30.6 ppm/MA/cm² at room temperature. First-principles calculations and experimental observations suggest that the Pt layer not only preserves the spin-momentum locked topological surface states in Bi₂Se₃ at the Fermi-level but also generates additional Rashba surface states within the Pt itself to enhance the effective SOT efficiency. Furthermore, we demonstrate that the two-terminal USMR-MRAM devices show robust output performance with 2nd harmonic resistance variation around 0.11 Ω/mA. Remarkably, the performance of these devices further improves at elevated temperatures, highlighting their potential for reliable operation in a wide range of environmental conditions. Our findings pave the way for future advancements in high-performance, energy-efficient spintronic memory devices.

Suggested Citation

  • Qi Zhang & Kun Tao & Chenglong Jia & Guofu Xu & Guozhi Chai & Yalu Zuo & Baoshan Cui & Dezheng Yang & Desheng Xue & Li Xi, 2024. "Large unidirectional spin Hall magnetoresistance in FeNi/Pt/Bi2Se3 trilayers by Pt interfacial engineering," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53884-0
    DOI: 10.1038/s41467-024-53884-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53884-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53884-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peng Li & Weikang Wu & Yan Wen & Chenhui Zhang & Junwei Zhang & Senfu Zhang & Zhiming Yu & Shengyuan A. Yang & A. Manchon & Xi-xiang Zhang, 2018. "Spin-momentum locking and spin-orbit torques in magnetic nano-heterojunctions composed of Weyl semimetal WTe2," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    2. Yang Lv & James Kally & Delin Zhang & Joon Sue Lee & Mahdi Jamali & Nitin Samarth & Jian-Ping Wang, 2018. "Unidirectional spin-Hall and Rashba−Edelstein magnetoresistance in topological insulator-ferromagnet layer heterostructures," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    3. Hyunsoo Yang & Sergio O. Valenzuela & Mairbek Chshiev & Sébastien Couet & Bernard Dieny & Bruno Dlubak & Albert Fert & Kevin Garello & Matthieu Jamet & Dae-Eun Jeong & Kangho Lee & Taeyoung Lee & Mari, 2022. "Two-dimensional materials prospects for non-volatile spintronic memories," Nature, Nature, vol. 606(7915), pages 663-673, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sahar Pakdel & Asbjørn Rasmussen & Alireza Taghizadeh & Mads Kruse & Thomas Olsen & Kristian S. Thygesen, 2024. "High-throughput computational stacking reveals emergent properties in natural van der Waals bilayers," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Lakhan Bainsla & Bing Zhao & Nilamani Behera & Anamul Md. Hoque & Lars Sjöström & Anna Martinelli & Mahmoud Abdel-Hafiez & Johan Åkerman & Saroj P. Dash, 2024. "Large out-of-plane spin–orbit torque in topological Weyl semimetal TaIrTe4," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Boxuan Yang & Bibek Bhujel & Daniel G. Chica & Evan J. Telford & Xavier Roy & Fatima Ibrahim & Mairbek Chshiev & Maxen Cosset-Chéneau & Bart J. van Wees, 2024. "Electrostatically controlled spin polarization in Graphene-CrSBr magnetic proximity heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    4. Qu Yang & Donghyeon Han & Shishun Zhao & Jaimin Kang & Fei Wang & Sung-Chul Lee & Jiayu Lei & Kyung-Jin Lee & Byong-Guk Park & Hyunsoo Yang, 2024. "Field-free spin–orbit torque switching in ferromagnetic trilayers at sub-ns timescales," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    5. Zhaowei Zhang & Naizhou Wang & Ning Cao & Aifeng Wang & Xiaoyuan Zhou & Kenji Watanabe & Takashi Taniguchi & Binghai Yan & Wei-bo Gao, 2022. "Controlled large non-reciprocal charge transport in an intrinsic magnetic topological insulator MnBi2Te4," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    6. Guowen Yuan & Weilin Liu & Xianlei Huang & Zihao Wan & Chao Wang & Bing Yao & Wenjie Sun & Hang Zheng & Kehan Yang & Zhenjia Zhou & Yuefeng Nie & Jie Xu & Libo Gao, 2023. "Stacking transfer of wafer-scale graphene-based van der Waals superlattices," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Wenkai Zhu & Yingmei Zhu & Tong Zhou & Xianpeng Zhang & Hailong Lin & Qirui Cui & Faguang Yan & Ziao Wang & Yongcheng Deng & Hongxin Yang & Lixia Zhao & Igor Žutić & Kirill D. Belashchenko & Kaiyou Wa, 2023. "Large and tunable magnetoresistance in van der Waals ferromagnet/semiconductor junctions," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    8. Luying Song & Ying Zhao & Bingqian Xu & Ruofan Du & Hui Li & Wang Feng & Junbo Yang & Xiaohui Li & Zijia Liu & Xia Wen & Yanan Peng & Yuzhu Wang & Hang Sun & Ling Huang & Yulin Jiang & Yao Cai & Xue J, 2024. "Robust multiferroic in interfacial modulation synthesized wafer-scale one-unit-cell of chromium sulfide," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Chenhui Zhang & Ze Jiang & Jiawei Jiang & Wa He & Junwei Zhang & Fanrui Hu & Shishun Zhao & Dongsheng Yang & Yakun Liu & Yong Peng & Hongxin Yang & Hyunsoo Yang, 2024. "Above-room-temperature chiral skyrmion lattice and Dzyaloshinskii–Moriya interaction in a van der Waals ferromagnet Fe3−xGaTe2," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53884-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.