IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53106-7.html
   My bibliography  Save this article

Supercharged fluorescent proteins detect lanthanides via direct antennae signaling

Author

Listed:
  • Kevin Y. Huang

    (Army Research Laboratory−South
    University of Texas at Austin)

  • Lizette Cardenas

    (University of Texas at Austin
    Bennett Aerospace)

  • Andrew D. Ellington

    (University of Texas at Austin)

  • David J. F. Walker

    (University of Texas at Austin
    University of Texas at Austin
    LLC)

Abstract

A sustainable operation for harvesting metals in the lanthanide series is needed to meet the rising demand for rare earth elements across diverse global industries. However, existing methods are limited in their capacity for detection and capture at environmentally and industrially relevant lanthanide concentrations. Supercharged fluorescent proteins have solvent-exposed, negatively charged residues that potentially create multiple direct chelation pockets for free lanthanide cations. Here, we demonstrate that negatively supercharged proteins can bind and quantitatively report concentrations of lanthanides via an underutilized lanthanide-to-chromophore pathway of energy transfer. The top-performing sensors detect lanthanides in the micromolar to millimolar range and remain unperturbed by environmentally significant concentrations of competing metals. As a demonstration of the versatility and adaptability of this energy transfer method, we show proximity and signal transmission between the lanthanides and a supramolecular assembly of supercharged proteins, paving the way for the detection of lanthanides via programmable protein oligomers and materials.

Suggested Citation

  • Kevin Y. Huang & Lizette Cardenas & Andrew D. Ellington & David J. F. Walker, 2024. "Supercharged fluorescent proteins detect lanthanides via direct antennae signaling," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53106-7
    DOI: 10.1038/s41467-024-53106-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53106-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53106-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Charles S. Cockell & Rosa Santomartino & Kai Finster & Annemiek C. Waajen & Lorna J. Eades & Ralf Moeller & Petra Rettberg & Felix M. Fuchs & Rob Houdt & Natalie Leys & Ilse Coninx & Jason Hatton & Lu, 2020. "Space station biomining experiment demonstrates rare earth element extraction in microgravity and Mars gravity," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    2. Joseph A. Mattocks & Jonathan J. Jung & Chi-Yun Lin & Ziye Dong & Neela H. Yennawar & Emily R. Featherston & Christina S. Kang-Yun & Timothy A. Hamilton & Dan M. Park & Amie K. Boal & Joseph A. Cotruv, 2023. "Enhanced rare-earth separation with a metal-sensitive lanmodulin dimer," Nature, Nature, vol. 618(7963), pages 87-93, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gretchen Vengerova & Isaac Lipsky & Gwyneth A. Hutchinson & Nils J. H. Averesch & Aaron J. Berliner, 2024. "Space bioprocess engineering as a potential catalyst for sustainability," Nature Sustainability, Nature, vol. 7(3), pages 238-246, March.
    2. Nils J. H. Averesch & Aaron J. Berliner & Shannon N. Nangle & Spencer Zezulka & Gretchen L. Vengerova & Davian Ho & Cameran A. Casale & Benjamin A. E. Lehner & Jessica E. Snyder & Kevin B. Clark & Lew, 2023. "Microbial biomanufacturing for space-exploration—what to take and when to make," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Yuxia Liu & Duyang Gao & Yuanyuan He & Jing Ma & Suet Yen Chong & Xinyi Qi & Hui Jun Ting & Zichao Luo & Zhigao Yi & Jingyu Tang & Chao Chang & Jiongwei Wang & Zonghai Sheng & Hairong Zheng & Xiaogang, 2024. "Single-point mutated lanmodulin as a high-performance MRI contrast agent for vascular and kidney imaging," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Rosa Santomartino & Nils J. H. Averesch & Marufa Bhuiyan & Charles S. Cockell & Jesse Colangelo & Yosephine Gumulya & Benjamin Lehner & Ivanna Lopez-Ayala & Sean McMahon & Anurup Mohanty & Sergio R. S, 2023. "Toward sustainable space exploration: a roadmap for harnessing the power of microorganisms," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53106-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.