IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52976-1.html
   My bibliography  Save this article

Rewiring native post-transcriptional global regulators to achieve designer, multi-layered genetic circuits

Author

Listed:
  • Trevor R. Simmons

    (The University of Texas at Austin)

  • Gina Partipilo

    (The University of Texas at Austin)

  • Ryan Buchser

    (The University of Texas at Austin)

  • Anna C. Stankes

    (The University of Texas at Austin)

  • Rashmi Srivastava

    (Baylor University)

  • Darian Chiu

    (The University of Texas at Austin)

  • Benjamin K. Keitz

    (The University of Texas at Austin)

  • Lydia M. Contreras

    (The University of Texas at Austin)

Abstract

As synthetic biology expands, creating “drag-and-drop” regulatory tools that can achieve diverse regulatory outcomes are paramount. Herein, we develop a approach for engineering complex post-transcriptional control by rewiring the Carbon Storage Regulatory (Csr) Network of Escherichia coli. We co-opt native interactions of the Csr Network to establish post-transcriptional logic gates and achieve complex bacterial regulation. First, we rationally engineer RNA-protein interactions to create a genetic toolbox of 12 BUFFER Gates that achieves a 15-fold range of expression. Subsequently, we develop a Csr-regulated NOT Gate by integrating a cognate 5’ UTR that is natively Csr-activated into our platform. We then deploy the BUFFER and NOT gates to build a bi-directional regulator, two input Boolean Logic gates OR, NOR, AND and NAND and a pulse-generating circuit. Last, we port our Csr-regulated BUFFER Gate into three industrially relevant bacteria simply by leveraging the conserved Csr Network in each species.

Suggested Citation

  • Trevor R. Simmons & Gina Partipilo & Ryan Buchser & Anna C. Stankes & Rashmi Srivastava & Darian Chiu & Benjamin K. Keitz & Lydia M. Contreras, 2024. "Rewiring native post-transcriptional global regulators to achieve designer, multi-layered genetic circuits," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52976-1
    DOI: 10.1038/s41467-024-52976-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52976-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52976-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yang Gao & Yuchen Zhou & Xudong Ji & Austin J. Graham & Christopher M. Dundas & Ismar E. Miniel Mahfoud & Bailey M. Tibbett & Benjamin Tan & Gina Partipilo & Ananth Dodabalapur & Jonathan Rivnay & Ben, 2024. "A hybrid transistor with transcriptionally controlled computation and plasticity," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Baojun Wang & Richard I Kitney & Nicolas Joly & Martin Buck, 2011. "Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology," Nature Communications, Nature, vol. 2(1), pages 1-9, September.
    3. Jae Sung Cho & Dongsoo Yang & Cindy Pricilia Surya Prabowo & Mohammad Rifqi Ghiffary & Taehee Han & Kyeong Rok Choi & Cheon Woo Moon & Hengrui Zhou & Jae Yong Ryu & Hyun Uk Kim & Sang Yup Lee, 2023. "Targeted and high-throughput gene knockdown in diverse bacteria using synthetic sRNAs," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Anastasia H. Potts & Christopher A. Vakulskas & Archana Pannuri & Helen Yakhnin & Paul Babitzke & Tony Romeo, 2017. "Global role of the bacterial post-transcriptional regulator CsrA revealed by integrated transcriptomics," Nature Communications, Nature, vol. 8(1), pages 1-15, December.
    5. Thomas M. Groseclose & Ronald E. Rondon & Zachary D. Herde & Carlos A. Aldrete & Corey J. Wilson, 2020. "Engineered systems of inducible anti-repressors for the next generation of biological programming," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weiyue Ji & Handuo Shi & Haoqian Zhang & Rui Sun & Jingyi Xi & Dingqiao Wen & Jingchen Feng & Yiwei Chen & Xiao Qin & Yanrong Ma & Wenhan Luo & Linna Deng & Hanchi Lin & Ruofan Yu & Qi Ouyang, 2013. "A Formalized Design Process for Bacterial Consortia That Perform Logic Computing," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-9, February.
    2. Hualiang Pi & Andy Weiss & Clare L. Laut & Caroline M. Grunenwald & Hannah K. Lin & Xinjie I. Yi & Devin L. Stauff & Eric P. Skaar, 2022. "An RNA-binding protein acts as a major post-transcriptional modulator in Bacillus anthracis," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Brian D. Huang & Dowan Kim & Yongjoon Yu & Corey J. Wilson, 2024. "Engineering intelligent chassis cells via recombinase-based MEMORY circuits," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Brian D. Huang & Thomas M. Groseclose & Corey J. Wilson, 2022. "Transcriptional programming in a Bacteroides consortium," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Andrew E. Short & Dowan Kim & Prasaad T. Milner & Corey J. Wilson, 2023. "Next generation synthetic memory via intercepting recombinase function," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Kanakov, Oleg & Chen, Shangbin & Zaikin, Alexey, 2024. "Learning by selective plasmid loss for intracellular synthetic classifiers," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    7. Yang Gao & Yuchen Zhou & Xudong Ji & Austin J. Graham & Christopher M. Dundas & Ismar E. Miniel Mahfoud & Bailey M. Tibbett & Benjamin Tan & Gina Partipilo & Ananth Dodabalapur & Jonathan Rivnay & Ben, 2024. "A hybrid transistor with transcriptionally controlled computation and plasticity," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Yuanli Gao & Lei Wang & Baojun Wang, 2023. "Customizing cellular signal processing by synthetic multi-level regulatory circuits," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Lorenzo Pasotti & Nicolò Politi & Susanna Zucca & Maria Gabriella Cusella De Angelis & Paolo Magni, 2012. "Bottom-Up Engineering of Biological Systems through Standard Bricks: A Modularity Study on Basic Parts and Devices," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-10, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52976-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.